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Resumo

Este trabalho trata da existência global de solução e do comportamento assintótico para três modelos
distintos: a equação de onda, inchamento de solos elásticos porosos com saturação de fluido, e o
modelo de vigas laminadas. Para todos os modelos, é aplicada a teoria dos semigrupos para provar
a existência global da solução. Na análise do comportamento assintótico, são aplicadas técnicas
distintas. Nos dois primeiros modelos citados acima, considera-se a ação dos pesos e o retardo
não constantes. O decaimento exponencial é provado usando o método dos multiplicadores. Para
o modelo de vigas laminadas, levando-se em conta a ação do amortecimento viscoelástico e um
forte retardo de tempo, duas situações são observadas: estabilidade exponencial se a velocidade de
propagação das ondas for a mesma, caso contrário, o decaimento polinomial com taxa t 1/2.

Palavras-chave: Equação de ondas, inchaço elástico poroso, vigas laminadas, pesos e retardo não
constantes, retardo de Kelvin-Voigt, retardo forte, decaimento exponencial, decaimento polinomial.





Abstract

This work deals with the global existence of solution and the asymptotic behavior for three distinct
models: The wave equation, swelling of porous elastic soils with a saturation of fluid, and the
laminated beamsmodel. For all models, is applied the semigroup theory to prove the global existence
of the solution. In the analysis of the asymptotic behavior, are applied distinct technics. In the first
twomodels cited above, is considered the action of weights and non-constants delay. The exponential
decay is proved by using the multipliers method. For the laminated beamsmodel, is take into account
the action of viscoelastic damping and a strong time delay, two situations are observed: Exponential
stability if the propagation speed of the waves is the same, otherwise, the polynomial decay with
rate t 1/2.

Keywords: Wave equation, porous elastic swelling, laminated beams, non-constant weights and
delay, Kelvin-Voigt delay, strong delay, exponential decay, polynomial decay.
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Introdução

O estudo de equações diferenciais parciais (EDP’s) está presente em diversas áreas da mate-
mática, como por exemplo: análise matemática, teoria da medida, topologia, geometria diferencial,
ciência da computação. Nos últimos anos, a aplicação de EDP’s para modelar fenômenos físicos reais,
se tornou também, uma ferramenta importante para outras áreas, como a ciência dos materiais,
mecânica dos fluidos, mecânica quântica, matemática financeira, biologia e biomedicina e ciências
ambientais.

Dentre os diversos ramos de estudo das equações diferenciais parciais, neste trabalho é inves-
tigado o comportamento assintótico das soluções de sistemas dissipativos. Na literatura, diferentes
técnicas têm sido utilizadas em problemas de estabilidade, a exemplo, do método de Kormonik ((KO-
MORNIK; ZUAZUA, 1990)), do método de Nakao ((NAKAO, 1977)) e do método de energia ((RIVERA,
1992)). Nesse sentido, foram adotadas duas técnicas analíticas para obter a estabilidade.

Para a estabilidade exponencial foi aplicado o método dos multiplicadores (A. Haraux (HARAUX,
1985) e V. Komornik (KOMORNIK, 1994)). Para a prova do decaimento polinomial foram analisadas
as normas uniformes, a partir do método desenvolvido por A. Borichev e Y. Tomilov (BORICHEV;
TOMILOV, 2010).

A proposta do presente trabalho é estudar a existência global e o comportamento assintótico
de soluções de três modelos distintos governados por equações diferenciais parciais, os quais estão
sob a ação de uma força de retardo. O retardo, em certos casos pode provocar a explosão da
solução em tempo finito, para um sistema que sem a ação do retardo é assintoticamente estável.
Estes modelos foram selecionados dentre os trabalhos publicados, os quais estão relacionados no
apêndice.

O trabalho está organizado em quatro capítulos. No primeiro são apresentadas as principais
ferramentas da teoria da Análise Funcional, de espaços de Sobolev, de semigrupos de classe C0 e
resultados sobre estabilidade exponencial e polinomial de sistemas dissipativos. Estes resultados
serão utilizados nos demais capítulos, que são independentes um do outro e abordam problemas
específicos.

Ressaltamos que com esta estrutura, para facilitar a compreensão do texto, cada capítulo
possui uma introdução específica, onde são apresentados revisões da literatura, descrevendo a
importância do problema proposto e um detalhamento de como o capítulo está estruturado.



2 Introdução

No Capítulo 2, consideramos a equação de ondas com retardo e pesos não constantes dada
por

ut t (x, t )−uxx(x, t )+µ1(t )ut (x, t )+µ2(t )ut (x, t −τ(t )) = 0

em um domínio limitado. Sob condições adequadas sobre os pesos não constantes µ1(t ) e µ2(t ) e
sobre o retardo não constante τ(t ), provamos a existência da solução global combinando a teoria de
semigrupos com a técnica da norma variável de Kato e para a prova do decaimento exponencial foi
utilizado o método da energia.

No Capítulo 3, estudamos a solução global e a estabilidade exponencial para o sistema unidi-
mensional na teoria isotérmica linear de solos elásticos porosos inchados sujeitos a pesos e retardo
variáveis no tempo, dado por

ρz zt t −a1zxx −a2uxx +µ1(t )zt +µ2(t )zt (x, t −τ(t )) = 0,

ρuut t −a3uxx −a2zxx = 0.

A existência da solução global para o problema em questão foi provada utilizando a mesma técnica
usada no Capítulo 2. Para provar a estabilidade exponencial, aplicamos o método da energia sem a
suposição de velocidades de ondas iguais.

No Capítulo 4, foi considerado um modelo de vigas laminadas combinando amortecimento
viscoelástico e forte amortecimento retardado. O sistema é descrito pelas seguintes equações

ρut t +G(ψ−ux)x = 0,

Iρ(3S −ψ)t t −D(3S −ψ)xx −G(ψ−ux)−µ1(3S −ψ)xxt −µ2(3S −ψ)xxt (x, t −τ) = 0,

3IρSt t −3DSxx +3G(ψ−ux)+4δS +4γSt = 0.

A solução global é provada usando a teoria de semigrupos de operadores lineares. Também foi
provado a falta de estabilidade exponencial quando a velocidade de propagações das ondas não são
iguais. De fato, foi mostrado nesta situação que o sistema vai a zero polinomialmente com taxa t−1/2.
Por outro lado, construindo alguns multiplicadores adequados, foi estabelecido que a energia decai
exponencialmente desde que a velocidade de propagações de onda se mantenham.
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Capítulo 1

Preliminares

Neste capítulo enunciaremos os conceitos básicos e apresentamos os resultados teóricos cujas
demonstrações podem ser encontradas nas referências citadas.

1.1 Análise Funcional e Teoria Espectral

Nesta seção vamos definir e apresentar alguns resultados deAnálise Funcional e Teoria Espectral
que serão muito importantes para o desenvolvimento de todo o trabalho.

Definição 1.1
Seja X um espaço vetorial sobre o corpoK, ondeK pode ser R ou C. Um norma emK é uma função
∥·∥ : X −→ [0,∞) que satisfaz as seguintes propriedades para quaisquer x, y ∈ X e λ ∈K:

(i) ∥x∥X ≥ 0 e ∥x∥X = 0 se, e somente se, x = 0;

(ii) ∥λx∥X = |λ|∥x∥X ;

(iii)
∥∥x + y

∥∥
X ≤ ∥x∥X +∥∥y

∥∥
X .

Um espaço vetorial normado é um par (X ,∥·∥X ) onde X é um espaço vetorial e ∥·∥X é uma
norma em X . Quando não houver perigo de ambiguidade, escreveremos apenas ∥·∥ ao invés de
∥·∥X .

A norma ∥·∥ em um espaço vetorial E sempre está associada a umamétrica d : X ×X −→ [0,∞)

dada por

d(x, y) := ∥∥x − y
∥∥ ,∀x, y ∈ X .

Definição 1.2 (Espaços de Banach)
Um espaço vetorial normado cuja métrica associada é completa é chamado de espaço vetorial
completo, ou Espaço de Banach.
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Definição 1.3 (Forma sesquilinear)
Seja E um espaço vetorial complexo. Uma forma sesquilinear em E é uma aplicação a : E ×E →C,
que satisfaz as seguintes condições, para quaisquer u, v, w ∈ E e λ ∈C:

(i) a(u + v, w) = a(u, w)+a(v, w);

(ii) a(λu, w) =λa(u, w);

(iii) a(u, v +w) = a(u, v)+a(u, w);

(iv) a(u,λw) =λa(u, w).

Definição 1.4
Uma forma sesquilinear a sobre um espaço normado X é denominada limitada ou contínua se existe
uma constante C > 0 tal que

|a(u, v)| ≤C∥u∥∥v∥, para todo u, v ∈ X .

Definição 1.5
Uma forma sesquilinear a sobre um espaço normado X é dita coerciva se existe uma constante β> 0

tal que
|a(v, v)| ≥β∥v∥, para todo v ∈ X .

Definição 1.6
Seja E um espaço vetorial complexo. Um funcional T : E →C é dito linear se satisfaz as seguintes
propriedades, para quaisquer u, v ∈ E e λ ∈C:

(i) T (u + v) = T (u)+T (v);

(ii) T (λu) =λT (u);

e é dito antilinear se

(i) T (u + v) = T (u)+T (v);

(ii) T (λu) =λT (u).

Definição 1.7
Um funcional T : X →C, sobre um espaço normado X é dito limitado se existe uma constante C > 0

tal que
|T (u)| ≤C∥u∥, para todo u ∈ X .

Se X e Y forem espaços vetoriais normados, denotaremos por L(X ;Y ) a classe dos operadores
lineares de X em Y e por L (X ;Y ) a classe dos operadores lineares e limitados de X em Y .

O próximo resultado nos traz várias equivalências sobre a continuidade de um operador linear:
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Teorema 1.8
Seja u ∈ L(X ;Y ). São equivalentes:

(i) u é lipschitziano;

(ii) u é uniformemente contínuo;

(iii) u é contínuo;

(iv) u é contínuo em algum ponto de X ;

(v) u é contínuo na origem;

(vi) sup{∥u(x)∥ ; x ∈ X e ∥x∥ ≤ 1} <∞;

(vii) Existe uma constante C > 0 tal que ∥u(x)∥ <C ∥x∥ para todo x ∈ X .

Demonstração. Veja ((BOTELHO; PELLEGRINO; TEXEIRA, 2015), Teorema 2.1.1)

É fácil ver que L (X ;Y ) é um espaço vetorial com as operações usuais e que os itens (vi ) e
(vi i ) do teorema anterior definem uma norma em L (X ;Y ):

Proposição 1.9
Sejam X e Y espaços vetoriais normados.

(i) A expressão
∥u∥ = sup{∥u(x)∥ ; x ∈ X e ∥x∥ ≤ 1}

define uma norma no espaço L (X ;Y );

(ii) ∥u(x)∥ ≤ ∥u∥∥x∥ para todo u ∈L (X ;Y ) e x ∈ X ;

(iii) Se Y for Banach, então L (X ;Y ) também é Banach.

Demonstração. Veja ((BOTELHO; PELLEGRINO; TEXEIRA, 2015), Teorema 2.1.4)

Quando Y = K, ao invés de escrevermos L (X ;K), denotaremos por E ′ e chamaremos de
espaço dual topológico de X , ou simplesmente dual de X , e seus elementos são funcionais lineares.
Como K é completo, segue que X ′ é Banach.

Teorema 1.10 (Hahn-Banach)
Seja E um espaço vetorial complexo e p : E → [0,∞) um funcional sublinear, isto é,

(i) p(u + v) ≤ p(u)+p(v), para todo u, v ∈ E ;

(ii) p(αu) = |α|p(u), para todo u ∈ E , α ∈C.



6 Capítulo 1. Preliminares

Se f : Z →C é um funcional linear definido no subespaço Z ⊂ E com | f (u)| ≤ p(u), então f possui
uma extensão linear F : Z →C dominada por p, ou seja,

F (w) = f (w) para todo w ∈ Z , e |F (u)| ≤ p(u) para todo u ∈ E .

F é chamada de extensão de Hahn-Banach de f .

Demonstração. Veja ((BOTELHO; PELLEGRINO; TEXEIRA, 2015), Teorema 3.1.2).

Definição 1.11
Seja X um espaço vetorial sobre K. Um produto interno em X é uma função

〈 · , · 〉 : X ×X →K

que satisfaz:

(i) 〈u, v +w〉 = 〈u, v〉+〈u, w〉, para todo u, v, w ∈ X ;

(ii) 〈u,λv〉 = λ̄〈u, v〉, para todo u, v ∈ X , e λ ∈K.

Definição 1.12 (Espaço de Hilbert)
Um espaço vetorial H com produto interno que é completo na norma induzida pelo produto interno,
isto é || · ||2H = 〈· , · 〉, é denominado de espaço de Hilbert. Em particular, um espaço de Hilbert é um
espaço de Banach.

Teorema 1.13 (Lax-Milgran)
Sejam H um espaço de Hilbert e a : H ×H →C uma forma sesquilinear limitada e coerciva. Então,
para todo funcional T : H →C antilinear limitado, existe um único u ∈ H tal que

a(u, v) = T (v), para todo v ∈ H .

Demonstração. Veja ((BREZIS, 2010), Corollary 5.8).

Teorema 1.14 (Desigualdade de Young)
Sejam 1 < p <∞ e p ′ ∈R tais que 1

p + 1
p ′ = 1. Então

ab ≤ ap

p
+ bp ′

p ′ ,

para todos a,b ≥ 0.

Demonstração. Veja ((BREZIS, 2010), Theorem 4.6).

Proposição 1.15 (Desigualdade de Cauchy-Schwarz)
Seja E um espaço vetorial com produto interno. Então

|〈x, y〉| ≤ ∥x∥E∥y∥E ,

para quaisquer x, y ∈ E . Além disso, a igualdade ocorre se, e somente se, os vetores x e y são
linearmente dependentes.
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Demonstração. Veja ((BOTELHO; PELLEGRINO; TEXEIRA, 2015), Proposição 5.1.2).

Definição 1.16
Sejam X um espaço de Banach e A : D(A ) ⊂ X → X . O conjunto resolvente de A é defindo por

ϱ(A ) = {λ ∈C ; (λI −A )−1 : X → X ∈L (X , X )}

e o espectro de A é dado por

σ(A ) =C\ϱ(A ),

formado por três subconjuntos distintos

(i) o espectro pontual σp (A ): o conjunto de seus autovalores, i.e., o conjunto formado pelos
λ ∈C tais que λI −A não é injetivo;

(ii) o espectro contínuo σc (A ): o conjunto dos λ ∈C tais que λI −A é um operador injetivo, tem
imagem densa em X , mas (λI −A )−1 : Im(λI −A ) → X é ilimitado;

(iii) o espectro residual σr (A ): o conjunto dos λ ∈C tais que λI −A é um operador injetivo mas
sua imagem não é densa em X .

Definição 1.17
Um operador linear T : D(T ) ⊂ V → W com domínio D(T ) é fechado, se para toda sequência
(vn) ⊂ D(T ) tal que vn → v ∈V e T vn → w ∈W , tem-se v ∈ D(T ) e T v = w .

Teorema 1.18
Seja A um operador linear fechado em um espaço de Hilbert H tal que o operador resolvente
(λ0I −A )−1 existe e é compacto para algum λ0. Então o espectro σ(A ) = C\ϱ(A ) é constituído
apenas de autovalores de A com multiplicidade finita.

Demonstração. Veja ((KATO, 1980), Theorem 6.29).

1.2 Espaços funcionais e espaços de Sobolev

Nesta seção, definiremos os espaços funcionais necessários para o desenvolvimento deste
trabalho. De agora em diante, Ω⊂Rn , n ≥ 1, denotará um conjunto aberto e limitado.

Definição 1.19
Seja u :Ω→R uma aplicação contínua. O suporte de u, que será denotado por supp(u) é definido
como o fecho do conjunto {x ∈Ω ; u(x) ̸= 0} emΩ. Se supp(u) for um compacto emΩ então dizemos
que u possui suporte compacto. Denotamos por C0(Ω) ao espaço das funções contínuas em Ω com
suporte compacto.
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Definição 1.20
C m(Ω) é o espaço das funções com todas as derivadas parciais de ordem ≤ m contínuas em Ω (m
inteiro não-negativo ou m =∞). Denotaremos C 0(Ω) =C (Ω).

Definição 1.21
O conjunto das funções ϕ :Ω→R que possuem todas as derivadas até a ordem m contínuas emΩ e
que têm suporte compacto, sendo que esse suporte depende de ϕ, é denotado por C m

0 (Ω) (ou C∞
0

se m =∞).

Definição 1.22
Uma sequência (ϕν)ν∈N de funções de C∞

0 (Ω) converge para zero quando existe K ⊂Ω compacto tal
que:

(i) supp(ϕν) ⊂ K , para todo ν ∈N;

(ii) Para cada α= (α1,α2, . . . ,αn) ∈Nn ,

Dαϕν→ 0 uniformemente em K ,

onde Dα denota o operador derivação de ordem α definido por

∂|α|

∂xα1
1 ∂xα2

2 · · ·∂xαn
n

,

onde |α| =α1 +α2 +·· ·+αn .

Definição 1.23
O espaço vetorial C∞

0 (Ω) com a noção de convergência definida acima é representado por D(Ω) é
denominado espaço das funções testes em Ω.

Definição 1.24
Seja 1 ≤ p ≤∞. Denotamos por Lp (Ω) o espaço de Banach das (classes de) funções definidas em Ω

com valores reais, tais que |u|p é integrável no sentido de Lebesgue em Ω com norma

∥u∥Lp =
(∫
Ω
|u(x)|p d x

) 1
p

, para 1 ≤ p ≤∞.

Para p = ∞, denotamos por L∞(Ω) o espaço de Banach das (classes de) funções mensuráveis
definidas em Ω que são essencialmente limitadas com a norma dada por

∥u∥L∞ = supessx∈Ω|u(x)| = inf{C ∈R; |u(x)| ≤C q.t.p. em Ω}.

Definição 1.25
Sejam Ω = (a,b) com −∞ ≤ a,b ≤ ∞ e p ∈ R com 1 ≤ p ≤ ∞. O espaço de Sobolev W 1,p (Ω) é
definido como

W 1,p (Ω) =
{

u ∈ Lp (Ω);∃ux ∈ Lp (Ω) com
∫ b

a
uϕx d x =−

∫ b

a
uxϕd x,∀ϕ ∈C 1

0 (Ω)

}
.
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O espaço W 1,p (Ω) é um espaço de Banach com a norma

∥u∥W 1,p = (∥u∥p
Lp +∥ux∥p

Lp

) 1
p .

Quando p = 2, denotamos H 1(Ω) =W 1,2(Ω). O espaço H 1(Ω) é um espaço de Hilbert equipado com
o produto interno

〈u, v〉H 1 = 〈u, v〉L2 +〈ux , vx〉L2 =
∫ b

a
(uv +ux vx)d x.

Proposição 1.26
O espaço W 1,p (Ω) é reflexivo para 1 < p <∞ e separável para 1 ≤ p <∞.

Demonstração. Veja ((BREZIS, 2010), Proposition 8.1).

Definição 1.27
Dado um inteiro m ≥ 2 e um número real 1 ≤ p ≤∞ definimos, por recorrência, o espaço

W m,p (Ω) = {
u ∈W m−1,p (Ω);D1u ∈W m−1,p (Ω)

}
,

com a notação D1u = ux , equipado com a norma

∥u∥W m,p = ∥u∥Lp +
m∑

i=1
∥D i u∥Lp .

E também definimos

H m(Ω) =W m,2(Ω),

equipado com o produto interno

〈u, v〉H 2 = 〈u, v〉L2 +
m∑

i=1
〈D i u,D i v〉L2 =

∫ b

a
uv d x +

m∑
i=1

∫ b

a
D i uD i v d x.

Seja Ω um aberto do Rn . Para m ∈ N e 1 ≤ p ≤ ∞, W m,p (Ω) é definido como o espaço
das funções u ∈ Lp (Ω) cujas derivadas distribucionais até a ordem m também estão em Lp (Ω).
É bem conhecido, ver (BREZIS, 2010) que W m,p(Ω) é um espaço de Banach separável, reflexivo e
uniformemente convexo com a norma

∥u∥W m,p (Ω) =
( ∑
|α|≤m

∥∥Dαu
∥∥p

Lp (Ω)

) 1
p

,

onde α= (α1, . . . ,αn) ∈Nn , |α| =α1 +·· ·+αn e Dα =
(
∂
∂x1

)α1 · · ·
(
∂
∂xn

)αn
. Quando p = 2, usualmente

denotamos W m,p (Ω) por H m(Ω), e este é um espaço de Hilbert com o produto interno correspon-
dente.

A seguir estão mais alguns resultados, dentre eles os de imersões, que são muito importantes.
po
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Teorema 1.28
Existe uma constante C > 0 (que depende somente de |Ω| ≤C ) tal que

∥u∥L∞ ≤C∥u∥W 1,p , ∀u ∈W 1,p (Ω), 1 ≤ p ≤∞.

Em outras palavras, W 1,p (Ω) ,→ L∞(Ω) com imersão contínua para todo 1 ≤ p ≤∞. Além disso, se
Ω é um intervalo limitado então

(i) A imersão W 1,p (Ω) ,→C (Ω) é compacta para todo 1 < p ≤∞.

(ii) A imersão W 1,1(Ω) ,→ Lq (Ω) é compacta para todo 1 ≤ q <∞.

Demonstração. Veja ((BREZIS, 2010), Theorem 8.8).

Corolário 1.29
Suponha queΩ seja um intervalo ilimitado e u ∈W 1,p (Ω), com 1 ≤ p <∞. Então, para x ∈Ω, tem-se
que

lim
x∈Ω|x|→∞

u(x) = 0.

Demonstração. Veja ((BREZIS, 2010), Corollary 8.9).

Corolário 1.30
Sejam u, v ∈W 1,p com 1 ≤ p ≤∞. Então

uv ∈W 1,p (Ω) e (uv)x = ux v +uvx .

Ademais, vale a fórmula de integração por partes∫ d

c
ux v d x = u(d)v(d)−u(c)v(c)−

∫ d

c
uvx d x, ∀c,d ∈Ω.

Demonstração. Veja ((BREZIS, 2010), Corollary 8.10).

Definição 1.31
Dado 1 ≤ p <∞, denotamos por W 1,p

0 (Ω) o fecho de C 1
0 (Ω) em W 1,p (Ω), equipado com a norma de

W 1,p (Ω).

O espaço H 1
0 (Ω) =W 1,2

0 (Ω) é equipado com o produto interno de H 1(Ω).

Teorema 1.32
Seja u ∈W 1,p (Ω). Então u ∈W 1,p

0 (Ω) se, e somente se, u = 0 em ∂Ω.

Demonstração. Veja ((BREZIS, 2010), Theorem 8.12).

Uma desigualdade muito importante e que será utilizada de forma recorrente nesse texto é a
desigualdade de Poincaré.
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Teorema 1.33 (Desigualdade de Poincaré)
Suponhamos Ω um intervalo limitado. Então existe uma constante Cp ≥ 0, que depende apenas do
comprimento do intervalo Ω, tal que

∥u∥W 1,p ≤Cp∥ux∥Lp , ∀u ∈W 1,p
0 (Ω).

Em outras palavras, em W 1,p
0 (Ω), ∥ux∥Lp é uma norma equivalente à norma de W 1,p (Ω).

Demonstração. Veja ((BREZIS, 2010), Theorem 8.13).

1.3 Semigrupos de classe C0 gerados por operadores dissipativos

Nesta seção vamos descrever as notações, definições e alguns resultados sobre semigrupos de
classe C0 que serão usados ao longo do trabalho.

Definição 1.34 (Semigrupo)
Seja L (X ) a álgebra dos operadores lineares limitados de um espaço de Banach X . Dizemos que
uma aplicação S :R+ →L (X ) é um semigrupo de operadores limitados de X , quando:

(i) S(0) = I , onde I é o operador identidade.

(ii) S(t + s) = S(t )S(s), para todo t , s ∈R+.

Dizemos que o semigrupo S é de classe C0 se

lim
t→0+

∥(S(t )− I )x∥ = 0, ∀x ∈ X .

Dizemos que o semigrupo S de classe C0 é limitado, se existir uma constante M > 0 tal que

∥S(t )∥ ≤ M , ∀0 ≤ t ≤∞.

Em particular, se M = 1, diremos que S é um semigrupo de classe C0 de contrações.

Definição 1.35
O operador A : D(A ) → X , definido por

A (x) = lim
h→0

S(h)− I

h
x, ∀x ∈ D(A ),

onde D(A ), o domínio de A é dado por

D(A ) =
{

x ∈ X ; existe o limite lim
h→0

S(h)− I

h
x

}
,

é dito gerador infinitesimal do semigrupo S.

Quando A é o gerador infinitesimal do semigrupo S, denotamos S(t ) = eA t .
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Como consequência imediata da definição anterior, temos a seguinte propriedade:

Proposição 1.36
O conjunto D(A ) é um subespaço vetorial de X e A é um operador linear.

Uma estimativa para o C0 semigrupo S(t ) é dada pela propriedade abaixo:

Teorema 1.37
Existe M ≥ 1 tal que

∥S(t )∥ ≤ Mew t , para todo t ≥ 0 sendo w uma constante positiva.

Demonstração. Veja ((PAZY, 1983), Theorem 2.2).

Como consequência imediata do teorema anterior, temos o seguinte resultado:

Corolário 1.38
Se S(t ) é um C0 semigrupo, então para todo x ∈ X , temos que

t 7→ S(t )x ∈C 0 ([0,∞); X ) .

Além disso, se A é o gerador infinitesimal de S(t ), então para todo x ∈ D(A ), temos que

t 7→ S(t )x ∈C 0 ([0,∞);D(A ))∩C 1 ([0,∞); X ) .

Demonstração. Veja ((PAZY, 1983), Corollary 2.3).

Consideremos agora a seguinte propriedade:

Teorema 1.39
Seja A um gerador infinitesimal de um C0 semigrupo S(t ). Então

S(t )x ∈ D(A ) e
d

d t
S(t )x =A S(t )x,

para todo x ∈ D(A ).

Demonstração. Veja ((PAZY, 1983), Theorem 2.4).

Corolário 1.40
Seja A um gerador infinitesimal de um C0 semigrupo S(t). Então D(A ) é denso em X e A é um
operador linear fechado

Demonstração. Veja ((PAZY, 1983), Corollary 2.5).

O próximo teorema nos fornece uma caracterização dos geradores infinitesimais de semigrupos
C0 de contrações.



1.4. Estabilidade 13

Teorema 1.41 (Hille-Yosida)
Um operador linear A sobre X é gerador infinitesimal de um semigrupoC0 de contrações S(t ), t ≥ 0,
se, e somente se,

(i) A é fechado e D(A ) é denso em X .

(ii) existe (λI −A )−1, para todo λ> 0 e ∥(λI −A )−1∥ ≤ 1
λ
, onde I é o operador identidade.

Demonstração. Veja ((PAZY, 1983), Theorem 3.1).

A seguir, apresentamos outra caracterização dos geradores infinitesimais dos semigruposC0 de
contrações, o teorema de Lummer-Phillips, o qual será usado com frequência nos próximos capítulos
para obtermos a existência e unicidade de solução para os modelos dissipativos que iremos estudar
nesse trabalho. Para isto, precisaremos de alguns resultados preliminares.

Sejam X ′ o dual do espaço de Banach X e 〈·, ·〉 a dualidade entre X e X ′. Para cada x ∈ X ,
introduzimos o conjunto

J (x) = {x∗;〈x, x∗〉 = ∥x∥2 = ∥x∗∥2}.

Pelo Teorema de Hahn-Banach, J (x) ̸= ;, para todo x ∈ X .

Definição 1.42
Dizemos que o operador linear A : D(A ) ⊂ X → X é dissipativo se para todo x ∈ D(A ), existe
x∗ ∈ F (x) tal que

ℜ〈A x, x∗〉 ≤ 0,

onde, símbolo ℜ indica a parte real.

Teorema 1.43 (Lummer-Phillips)
Seja A um operador linear com domínio D(A ) denso no espaço de Hilbert X .

(i) Se A é dissipativo e existe λ0 > 0 tal que o conjunto imagem, R(λ0I −A ), de λ0I −A é X ,
então A é o gerador infinitesimal de um semigrupo C0 de contrações sobre X .

(ii) SeA é o gerador infinitesimal de um semigrupoC0 de contrações sobre X entãoA é dissipativo
e R(λI −A ) = X , para todo λ> 0.

Demonstração. Veja ((PAZY, 1983), Theorem 4.3).

1.4 Estabilidade

Esta seção é relacionada com os resultados que estabelecem as condições necessárias e
suficientes para a estabilidade de um C0-semigrupo.



14 Capítulo 1. Preliminares

Definição 1.44
Um semigrupo S(t ) = eA t é exponencialmente estável se existem constantes α> 0 e M ≥ 1 tais que

∥eA t∥ ≤ Me−αt , ∀t ≥ 0.

O próximo resultado, devido a J. Prüss, caracteriza a estabilidade exponencial de um semigrupo
C0 de contrações.

Teorema 1.45
Seja S(t ) = eA t um semigrupo de classe C0 de contrações sobre um espaço de Hilbert H . Então S(t )

é exponencialmente estável se, e somente se,

ϱ(A ) ⊃ {iβ;β ∈R} ≡ iR

e
limsup
|β|→∞

∥(iβI −A )−1∥ <∞.

Demonstração. Veja ((PRüSS, 1984), Corollary 5).

Para semigrupos que não decaem exponencialmente, podemos analisar o decaimento polino-
mial com normas não uniformes.

Definição 1.46
Um semigrupo S(t ) = eA t é polinomialmente estável se existem constantes C > 0 e γ> 0 tais que

∥eA t∥H ≤ C

tγ
∥u∥D(A ), ∀u ∈ D(A ).

Vamos introduzir a seguinte notação:

∥(iλI −A )−1∥ =O(|λ|α)

significa que o crescimento de ∥(iλI −A )−1∥ é da ordem |λ|α, ou em outras palavras
1

|λ|α ∥(iλI −A )−1F∥ ≤C∥F∥, ∀ F ∈ R(iλI −A ).

O próximo resultado, de A. Borichev e Y. Tomilov, caracteriza a estabilidade polinomial de
semigrupos C0 limitados sobre espaços de Hilbert.

Teorema 1.47
Seja S(t ) = eA t um semigrupo C0 limitado sobre um espaço de Hilbert H , tal que iR⊂ ϱ(A ). Então,
para α> 0 fixado, as seguintes condições são equivalentes:

(i) ∥(iλI −A )−1∥ =O(|λ|α), |λ|→∞.

(ii) ∥S(t )A −1∥ =O
(
t−

1
α

)
, t →∞.

Demonstração. Veja ((BORICHEV; TOMILOV, 2010), Theorem 2.4).
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Capítulo 2

Equaçãodeondas com retardo epesos não cons-
tantes

2.1 Introdução

Neste capítulo provamos a existência de solução global e a estabilidade exponencial de energia
para uma equação de ondas com retardo e pesos não constantes dada por

ut t (x, t )−uxx(x, t )+µ1(t )ut (x, t )+µ2(t )ut (x, t −τ(t )) = 0 em Ω× (0,∞), (2.1)

com condições de fronteira dadas por

u(0, t ) = u(L, t ) = 0, ∀ t ≥ 0, (2.2)

e condições iniciais

u(x,0) = u0(x),ut (x,0) = u1(x), x ∈Ω,

ut (x,−sτ(0)) = u2(x, s), (x, s) ∈Ω× (0,1),
(2.3)

onde Ω=]0,L[ é um intervalo aberto da reta R. ut (x, t) representa o atrito, µ1(t) representa um
peso variável no tempo, ut (x, t −τ(t )) representa um controle sobre o atrito com peso µ2(t ) variável
no tempo conhecido como retardo, que no problema proposto está sob a ação de uma função τ(t )

real. Os dados iniciais (u0,u1,u2) pertencem a adequados espaços funcionais.

Esta abordagem com pesos e retardo variando no tempo, generaliza os resultados encontrados
na literatura. Para ter uma compreensão da importância deste resultado, apresentamos a seguir uma
revisão bibliográfica com ênfase na evolução histórica e nos aspectos matemáticos recentes. No caso
de coeficientes de atrito e de retardo constantes µ1 e µ2 respectivamente, destacamos o pioneiro
trabalho de S. Nicaise e C. Pignotti (NICAISE; PIGNOTTI, 2006). Sob pressupostos adequados, os
autores provaram a estabilidade exponencial da solução introduzindo energias apropriadas e usando
algumas desigualdades de observabilidade. Resultados de instabilidade também foram fornecidos
para o caso de algumas suposições não serem satisfeitas.
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W. Liu (LIU, 2013) estudou a equação viscoelástica fraca com um termo de atraso interno e
variável no tempo. Ao introduzir a energia e o funcional de Lyapunov, o autor estabeleceu uma
estimativa geral da taxa de decaimento para a energia sob adequadas hipóteses.

A. Benaissa, A. Benguessoum e S. Messaoudi (BENAISSA; BENGUESSOUM; MESSAOUDI, 2014)
consideraram os pesos, tanto no atrito quanto no retardo µ1(t ) e µ2(t ) em função do tempo. Cabe
destacar que os autores levaram em conta o tempo de atraso como uma constante. Para este
problema, a existência de solução foi feita pelo método de Faedo-Galerkin e a estimativa da taxa de
decaimento para a energia foi dada usando o método direto de multiplicadores.

Os três trabalhos acima citados foram fonte de inspiração para os resultados obtidos neste
capítulo. Vejamos a seguir outros trabalhos relacionados, os quais evideciam a importância do tema.

F. Tahamtani e A. Peyravi (TAHAMTANI; PEYRAVI, 2013) investigaram a equação de onda viscoe-
lástica não linear com termo fonte. Os autores utilizaram a teoria do Potencial para mostrar que
assumindo determinadas restrições nos dados iniciais e para energia inicial arbitrária, as soluções
do problema explodem em tempo finito. Já no artigo dos autores M. Remil e A. Hakem em (REMIL;
HAKEM, 2017) estudaram a equação de onda viscoelástica com um termo de atraso constante. Para
a prova da existência global das soluções, eles utilizaram o método de Faedo-Galerkin. Em segundo
lugar, o método do multiplicador é usado para estabelecer uma estimativa de decaimento para a
energia. Já para uma equação de onda viscoelástica acoplada com atraso variável no tempo, F. Z.
Benyoub et.al. (BENYOUB; FERHAT; HAKEM, 2018) combinaram o procedimento de Faedo-Galerkin
com o método da energia para estudarem a existência global das soluções e o comportamento
assintótico das soluções.

Podemos citar outros trabalhos muito relevantes, em que foram estudados sistemas conside-
rando um retardo, sob ação de uma função real. S. Nicaise e C. Pignotti (NICAISE; PIGNOTTI, 2011)
que estudaram o problema da estabilização por amortecimento interior da equação de onda com
limite ou retardo variável no tempo interno, e M. Ferhat (FERHAT, 2016) que estudou o decaimento
de energia das soluções para a equação de onda com um termo de retardo variável no tempo nas
realimentações internas fracamente não lineares.

Para problemas com retardo em diferentes contextos, citamos (FENG; YANG, 2017; FENG,
2018; THAN; WANG, 2019; YANG; WANG, 2019) como referências. Na ausência do retardo, ou seja,
µ2(t) = 0, o problema (2.1) é exponencialmente estável desde que µ1(t) seja constante, veja por
exemplo (CHEN, 1979; CHEN, 1981; KOMORNIK, 1994; LASIECKA; TRIGGIANI, 1987; NAKAO, 1977) e
suas referências.

O retardo variando no tempo é a propriedade de um sistema físico pelo qual a resposta a
uma força aplicada é retardada em seu efeito e a questão central é que a fonte de atrasos pode
desestabilizar um sistema que é assintoticamente estável na ausência de retardos, veja (DATKO;
LAGNESE; POLIS, 1986a). De fato, um retardo arbitrariamente pequeno pode desestabilizar um
sistema que é uniformemente assintoticamente estável na ausência deste, a menos que termos de
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controle adicionais forem usados, veja por exemplo (DATKO, 1988; GUESMIA, 2013; XU; YUNG; LI,
2006).

Outros trabalhos relevantes e que valem a pena serem citados foram, por exemplo, o de S.
Nicaise e C. Pignotti (NICAISE; PIGNOTTI, 2008), onde, utilizando o método da energia, os autores
estudando a estabilização da equação com fronteira ou atraso interno distribuído. Já C. Raposo et al.
(RAPOSO et al., 2017a), utilizaram a teoria de semigrupos par provar tanto a solução global quando
a estabilidade exponencial para uma equação de onda com amortecimento friccional e condição
de retado não local. Por fim, o problema de transmissão com retardo distribuído foi estudado em
(LIU, 2017), onde foi estabelecida a estabilidade exponencial da solução através da introdução de um
funcional de Lyapunov adequado.

Motivado pelos trabalhos citados anteriormente, consideramos uma equação de onda com
retardo e pesos não constantes, portanto, neste capítulo faremos uma generalização dos trabalhos
anteriores. A parte restante deste capítulo está organizada da seguinte forma. Na Seção 2.2 introdu-
zimos algumas notações e provamos a propriedade dissipativa da energia total do sistema. Na Seção
2.3, para uma abordagem combinando teoria de semigrupos (veja (NAKAO, 1977) e (H, 1973)) com o
método de estimativa de energia provamos a existência e unicidade da solução. Por fim, na Seção
2.4 apresentamos o resultado da estabilidade exponencial.

2.2 Notações e preliminares

Vamos precisar das seguintes hipóteses:

(H1) A função de retardo τ= τ(t ), satisfaz

τ ∈W 2,∞([0,T ]), ∀T > 0. (2.4)

Existem constantes positivas τ0, τ1 e d , satisfazendo

0 < τ0 ≤ τ(t ) ≤ τ1, ∀t > 0 (2.5)

e
τ′(t ) ≤ d < 1, ∀t > 0; (2.6)

(H2) µ1 :R+ →]0,+∞[ é uma função não crescente de classe C 1(R+) satisfazendo∣∣∣∣µ′
1(t )

µ1(t )

∣∣∣∣≤ M1, 0 <α0 ≤µ1(t ), ∀t ≥ 0, (2.7)

onde α0 e M1 são constantes tais que M1 > 0.

(H3) µ2 :R+ →R é uma função de classe C 1(R+), que não é necessariamente positiva ou monótona,
de tal forma que ∣∣µ2(t )

∣∣≤βµ1(t ), (2.8)
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∣∣µ′
2(t )

∣∣≤ M2µ1(t ), (2.9)

para algum 0 <β<p
1−d e M2 > 0.

Enunciaremos agora um lemas que serão necessários mais tarde.

Lema 2.1 (Desigualdade de Sobolev-Poincaré)
Seja q um número real com 2 ≤ q ≤+∞. Então exise uma constante c∗ = c∗(]0,L[, q) tal que

∥Ψ∥q ≤ c∗ ∥Ψx∥2 , paraΨ ∈ H 1
0 (]0,L[).

Lema 2.2 ((HARAUX, 1985; KOMORNIK, 1994))
Seja E :R+ →R+ uma função não crescente e assuma que exista duas constantes σ>−1 e ω> 0 tais
que ∫ +∞

S
E 1+σ(t )d t ≤ 1

ω
Eσ(0)E(S), se 0 ≤ S <+∞.

Então

E(t ) = 0 ∀t ≥ Eσ(0)

ω|σ| , se −1 <σ< 0,

E(t ) ≤ E(0)

(
1+σ

1+ωσt

) 1
σ ∀t ≥ 0, se σ> 0,

E(t ) ≤ E(0)e1−ωt ∀t ≥ 0, se σ= 0.

Consideremos agora o seguinte procedimento que pode ser encontrado em (NICAISE; PIGNOTTI;
VALEIN, 2011), para obter uma nova variável (independente)

z(x,ρ, t ) = ut (x, t −τ(t )ρ), x ∈Ω,ρ ∈]0,1[, t > 0. (2.10)

Então, facilmente se verifica que z satisfaz

τ(t )zt (x,ρ, t )+ (1−τ′(t )ρ)zρ(x,ρ, t ) = 0, x ∈Ω, ρ ∈]0,1[, t > 0

e o problema (2.1) pode ser reescrito como

ut t (x, t )−uxx(x, t )+µ1(t )ut (x, t )+µ2(t )z(x,1, t ) = 0 em Ω× (0,∞),

τ(t )zt (x,ρ, t )+ (1−τ′(t )ρ)zρ(x,ρ, t ) = 0 em Ω× (0,1)× (0,∞),
(2.11)

sujeito as condições de fronteira dadas por

u(0, t ) = u(L, t ) = 0, ∀ t ≥ 0, (2.12)

e condições iniciais

u(x,0) = u0(x), ut (x,0) = u1(x) em Ω,

z(x,ρ,0) = u2(x,ρ) em Ω× (0,1).
(2.13)
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Definimos o funcional de energia relacionado à solução do problema (2.11)-(2.13) por

E(t ) = 1

2
∥ut∥2

L2(Ω) +
1

2
∥ux∥2

L2(Ω) +
ξ(t )τ(t )

2

∫
Ω

∫ 1

0
z2(x,ρ, t )dρd x, (2.14)

onde
ξ(t ) = ξ̄µ1(t ) (2.15)

é uma função não crescente de classe C 1(R+) e ξ̄ é uma constante positiva tal que
βp

1−d
< ξ̄< 2− βp

1−d
. (2.16)

Nosso primeiro resultado afirma que a energia é uma função não crescente.

Lema 2.3
SejaU (t ) = (u(t ),ut (t ), z(t )) uma solução do problema (2.11)–(2.13). Então, o funcional de energia
definido por (2.14) satisfaz

d

d t
E(t ) ≤−µ1(t )

(
1− ξ̄

2
− β

2
p

1−d

)
∥ut∥2

L2(Ω)

−µ1(t )

(
ξ̄(1−τ′(t ))

2
− β

p
1−d

2

)
∥z(x,1, t )∥2

L2(Ω)

≤ 0.

(2.17)

Demonstração. Multiplicando (2.11)1 porut (x, t ), integrando sobreΩ e usando integração por partes,
temos que

1

2

d

d t

(
∥ut∥2

L2(Ω) +∥ux∥2
L2(Ω)

)
+µ1(t )∥ut∥2

L2(Ω) +µ2(t )
∫
Ω

z(x,1, t )ut d x. (2.18)

Agora multiplicando (2.11)2 por ξ(t )z(x,ρ, t ) e integrando sobre Ω×]0,1[, obtemos

τ(t )ξ(t )
∫
Ω

∫ 1

0
zt (x,ρ, t )z(x,ρ, t )dρd x =−ξ(t )

2

∫
Ω

∫ 1

0
(1−τ′(t )ρ)

∂

∂ρ
(z(x,ρ, t ))2 dρd x.

Consequentemente, como(
1−τ′(t )ρ

) ∂

∂ρ
z2(x,ρ) = ∂

∂ρ

((
1−τ′(t )ρ

)
z2(x,ρ)

)+τ′(t )z2(x,ρ),

obtemos que
d

d t

(
ξ(t )τ(t )

2

∫
Ω

∫ 1

0
z2(x,ρ, t )dρd x

)
=ξ(t )

2

∫
Ω

(z2(x,0, t )− z2(x,1, t ))d x

+ ξ(t )τ′(t )

2

∫
Ω

z2(x,1, t )d x

+ ξ′(t )τ(t )

2

∫
Ω

∫ 1

0
z2(x,ρ, t )dρd x.

(2.19)

Por (2.14), (2.18) e (2.19), obtemos
d

d t
E(t ) = ξ(t )

2
∥ut∥2

L2(Ω) −
ξ(t )

2
∥z(x,1, t )∥2

L2(Ω)

+ ξ(t )τ′(t )

2
∥z(x,1, t )∥2

L2(Ω) +
ξ′(t )τ(t )

2

∫
Ω

∫ 1

0
z2(x,ρ, t )dρd x

−µ1(t )∥ut∥2
L2(Ω) −µ2(t )

∫
Ω

z(x,1, t )ut d x.

(2.20)
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Utilizando a desigualdade de Young, temos que

µ2(t )
∫
Ω

z(x,1, t )ut d x ≤
∣∣µ2(t )

∣∣
2
p

1−d
∥ut∥2

L2(Ω) +
∣∣µ2(t )

∣∣p1−d

2
∥z(x,1, t )∥2

L2(Ω). (2.21)

Substituindo (2.21) em (2.20), obtemos

d

d t
E(t ) ≤−

(
µ1(t )− ξ(t )

2
−

∣∣µ2(t )
∣∣

2
p

1−d

)
∥ut∥2

L2(Ω)

−
(
ξ(t )

2
− ξ(t )τ′(t )

2
−

∣∣µ2(t )
∣∣p1−d

2

)
∥z(x,1, t )∥2

L2(Ω)

+ ξ′(t )τ(t )

2

∫
Ω

∫ 1

0
z2(x,ρ, t )dρd x

≤−µ1(t )

(
1− ξ̄

2
− β

2
p

1−d

)
∥ut∥2

L2(Ω)

−µ1(t )

(
ξ̄(1−τ′(t ))

2
− β

p
1−d

2

)
∥z(x,1, t )∥2

L2(Ω)

≤ 0.

Lema 2.4
Seja U (t) = (u(t),ut (t), z(t)) uma solução do problema (2.11)–(2.13). Então o funcional de energia
definido por (2.14) satisfaz

∥ut (x, t )∥2
L2(Ω) <− 1

σ

d

d t
E(t ),

onde σ= a0

(
1− ξ̄

2 −
β

2
p

1−d

)
.

Demonstração. Pelo Lema 2.3, temos que

− d

d t
E(t ) ≥µ1(t )

(
1− ξ̄

2
+ β

2
p

1−d

)
∥ut∥2

L2(Ω)

+µ1(t )

(
ξ̄(1−τ′(t ))

2
+ β

p
1−d

2

)
∥z(x,1, t )∥2

L2(Ω)

≥ 0.

Por (H1), obtemos

0 ≤ a0

(
1− ξ̄

2
+ β

2
p

1−d

)
∥ut∥2

L2(Ω)

≤µ1(t )

(
1− ξ̄

2
+ β

2
p

1−d

)
∥ut∥2

L2(Ω)

≤− d

d t
E(t )

e assim provamos o Lema.
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2.3 Solução global

Para a configuração do semigrupo, introduzimosU (t ) = (u(t ), v(t ), z(t ))T , onde v = ut . Assim,
reescrevemos (2.11)-(2.13) como

{
Ut =A (t )U ,

U (0) =U0 = (u0,u1,u2)T ,
(2.22)

onde o operador A (t ) é definido por

A (t )U =
(

v,uxx −µ1(t )v −µ2(t )z(x,1, t ),−1−τ′(t )ρ

τ(t )
zρ(x,ρ, t )

)T

. (2.23)

Introduzimos o espaço de fase

H = H 1
0 (Ω)×L2(Ω)×L2(Ω×]0,1[)

e o domínio de A (t ) é definido por

D(A (t )) = {
(u, v, z)T ∈ H/v = z(·,0) em Ω

}
, (2.24)

onde
H = H 2(Ω)∩H 1

0 (Ω)×H 1
0 (Ω)×L2(Ω; H 1

0 (]0,1[)).

Note que o domínio do operador A (t ) é independente do tempo t , i.e.,

D(A (t )) = D(A (0)), ∀t > 0. (2.25)

H é um espaço de Hilbert equipado com o seguinte produto interno

〈U ,Ū 〉H =
∫
Ω

ux ūx d x +
∫
Ω

v v̄ d x +ξ(t )τ(t )
∫
Ω

∫ 1

0
zz̄ dρd x, (2.26)

paraU = (u, v, z)T e Ū = (ū, v̄ , z̄)T .

Uma teoria geral para equações do tipo (2.22) foi desenvolvida usando a teoria de semigrupos
(KATO, 1967), (KATO, 1985) e (PAZY, 1983). A maneira mais simples de provar existência e unicidade
resulta em mostrar que a terna {(A ,H ,Y )}, com A = {A (t )/t ∈ [0,T ]}, para alguns T > 0 fixos
e Y = A (0), forma um sistema de domínio constante (veja (KATO, 1967) e (KATO, 1985)). Mais
precisamente, o próximo teorema, que foi introduzido por Tosio Kato (veja Theorem 1.9 em (KATO,
1967), Theorem 2.13 em (KATO, 1985) ou (MEHMETI, 1972)) nos fornece o seguinte resultado de
existência e unicidade:

Teorema 2.5
Assuma que

(i) Y = D(A (0)) é um subconjunto denso de H ;
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(ii) D(A (t )) = D(A (0)), ∀t > 0;

(iii) Para todo t ∈ [0,T ], A (t) gera um semigrupo fortemente contínuo sobre H e a família
A (t ) = {A (t )/t ∈ [0,T ]} é estável com estabilidade constante C e m independente de t (i.e., o
semigrupo (St (s))s≥0 gerado por A (t) satisfaz ∥St (s)u∥H ≤Cems∥u∥H , para todo u ∈H e
s ≥ 0);

(iv) ∂tA (t) pertence a L∞∗ ([0,T ],B(Y ,H )), que é o espaço de classes de funções equivalentes
essencialmente limitadas e fortemente mensuráveis de [0,T ] para o conjunto B(Y ,H ) de
operadores limitados de Y para H .

Então o problema (2.22) tem uma única solução

U ∈C ([0,T ],Y )∩C 1([0,T ],H ),

para qualquer dado inicial em Y .

Desta forma, estamos prontos para enunciar e provar o principal resultado desta seção, que é:

Teorema 2.6 (Solução global)
Para qualquer dado inicialU0 ∈H existe uma única soluçãoU satisfazendo

U ∈C ([0,+∞[,H )

para o problema (2.22). Além disso, seU0 ∈ D(A (0)), então

U ∈C ([0,+∞[,D(A (0)))∩C 1([0,+∞[,H ).

Demonstração. Nosso objetivo é então verificar as suposições do Teorema 2.5 para o problema
(2.22).

(i) Primeiramente provaremos que D(A (0)) é denso em H .

A prova é a mesma do Lema 2.2 de (NICAISE; PIGNOTTI; VALEIN, 2011). Nós a faremos por uma
questão de completude.

Seja ( f , g ,h)T ortogonal a todos os elementos de D(A (0)), a saber

0 = 〈(u, v, z)T , ( f , g ,h)T 〉H =
∫
Ω

ux fx d x +
∫
Ω

v g d x +ξ(t )τ(t )
∫
Ω

∫ 1

0
zh dρd x,

para todo (u, v, z)T ∈ D(A (0)).

Primeiro tomamos u = v = 0 e z ∈D(Ω×]0,1[). Como (0,0, z)T ∈ D(A (0)), temos que∫
Ω

∫ 1

0
zh dρd x = 0.

Como D(Ω×]0,1[) é denso em L2(Ω×]0,1[), deduzimos que h = 0. Da mesma forma, tomando
u = z = 0 e v ∈D(Ω), vemos que g = 0.
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A condição de ortogonalidade acima é então reduzida para

0 =
∫
Ω

ux fx d x, ∀(u, v, z)T ∈ D(A (0)).

Restringindo-nos a v = z = 0, obtemos

0 =
∫
Ω

ux fx d x, ∀(u,0,0)T ∈ D(A (0)).

Verifica-se imediatamente que (u,0,0)T ∈ D(A (0)) se, e somente se, u ∈ H 2(Ω)∩H 1
0 (Ω) e como

H 2(Ω)∩ H 1
0 (Ω) é denso em H 1

0 (Ω) (equipado com o produto interno 〈ϕ,ψ〉H 1
0 (Ω) =

∫
Ωϕxψx d x),

deduzimos que f = 0.

Consequentemente,

D(A (0)) é denso em H . (2.27)

(ii) Foi observado em (2.25).

(iii) Agora, mostramos que o operador A (t) gera um C0-semigrupo em H para um t fixo.
Definimos o produto interno dependente do tempo em H , (que é equivalente ao produto interno
(2.26)), dado por

〈U ,Ū 〉t =
∫
Ω

ux ūx d x +
∫
Ω

v v̄ d x +ξ(t )τ(t )
∫
Ω

∫ 1

0
zz̄ dρd x, (2.28)

para qualquerU = (u, v, z)T e Ū = (ū, v̄ , z̄)T em H, onde

ξ(t ) = ξ̄µ1(t ) (2.29)

e ξ̄ é uma constante positiva tal que

βp
1−d

< ξ̄< 2− βp
1−d

. (2.30)

Calcularemos 〈A (t )U ,U 〉t para um t fixado. TomandoU = (u, v, z)T ∈ D(A (t )), então

〈A (t )U ,U 〉t =
∫
Ω

vxux d x +
∫
Ω

(
uxx −µ1(t )v −µ2(t )z(·,1)

)
v d x

−ξ(t )
∫
Ω

∫ 1

0

(
1−τ′(t )ρ

)
zρ(x,ρ)z(x,ρ)dρd x.

Integrando por partes, obtemos

〈A (t )U ,U 〉t =−µ1(t )∥v∥2
L2(Ω) −µ2(t )

∫
Ω

z(·,1)v d x

−
∫
Ω

∫ 1

0

(
1−τ′(t )ρ

) ∂

∂ρ
z2(x,ρ)dρd x.

Sendo (
1−τ′(t )ρ

) ∂

∂ρ
z2(x,ρ) = ∂

∂ρ

((
1−τ′(t )ρ

)
z2(x,ρ)

)+τ′(t )z2(x,ρ),
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temos que∫ 1

0

(
1−τ′(t )ρ

) ∂

∂ρ
z2(x,ρ)dρ = (

1−τ′(t )
)

z2(x,1)− z2(x,0)+τ′(t )
∫ 1

0
z2(x,ρ)dρ.

Assim,

〈A (t )U ,U 〉t =−µ1(t )∥v∥2
L2(Ω) −µ2(t )

∫
Ω

z(x,1)v d x + ξ(t )

2
∥z(x,0)∥2

L2(Ω)

− ξ(t )
(
1−τ′(t )

)
2

∥z(x,1)∥2
L2(Ω) −

ξ(t )τ′(t )

2

∫
Ω

∫ 1

0
z2(x,ρ)dρd x.

Portanto, por (2.20) e (2.21), deduzimos que

〈A (t )U ,U 〉t ≤−µ1(t )

(
1− ξ̄

2
− β

2
p

1−d

)
∥v∥2

L2(Ω)

−µ1(t )

(
ξ̄(1−τ′(t ))

2
− β

p
1−d

2

)
∥z(x,1, t )∥2

L2(Ω)

+ ξ(t )|τ′(t )|
2τ(t )

τ(t )
∫
Ω

∫ 1

0
z2(x,ρ)dρd x.

Por (H3) e (2.29), temos que

〈A (t )U ,U 〉t ≤−µ1(t )

(
1− ξ̄

2
− β

2
p

1−d

)
∥v∥2

L2(Ω)

−µ1(t )

(
ξ̄(1−τ′(t ))

2
− β

p
1−d

2

)
∥z(x,1, t )∥2

L2(Ω)

+κ(t )〈U ,U 〉t ,

onde

κ(t ) =
√

1+τ′(t )2

2τ(t )
.

Por (2.17), obtemos
〈A (t )U ,U 〉t −κ(t )〈U ,U 〉t ≤ 0, (2.31)

o que significa que o operador Ã (t ) =A (t )−κ(t )I é dissipativo (nos próximos passos usaremos Ã

como um pivô para então recuperar as propriedades pretendidas de A ).

Agora, mostremos que o operador λI −A (t ) é sobrejetivo para t > 0 fixado e λ> 0. Para este
fim, seja F = ( f1, f2, f3)T ∈H , buscamosU = (u, v, z)T ∈ D(A (t )) solução de

(λI −A (t ))U = F,

que está verificando o seguinte sistema de equações

λu − v = f1, (2.32)

λv −uxx +µ1(t )v +µ2(t )z(x,1) = f2, (2.33)

λz + 1−τ′(t )ρ

τ(t )
zρ = f3. (2.34)
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Suponha que encontramos u com a regularidade apropriada. Portanto, de (2.32), temos que

v =λu − f1. (2.35)

É claro que v ∈ H 1
0 (Ω). Além disso, por (2.34), podemos encontrar z. Seguindo a mesma abordagem

de (NICAISE; PIGNOTTI, 2006), obtemos que

z(x,ρ) = v(x)e−ϑ(ρ,t ) +τ(t )e−ϑ(ρ,t )
∫ ρ

0
f3(x, s)eϑ(s,t ) d s

é solução de (2.34), se τ′(t ) = 0, onde ϑ(ℓ, t ) =λℓτ(t ), e

z(x,ρ) = v(x)eζ(ρ,t ) +eζ(ρ,t )
∫ ρ

0

τ(t ) f3(x, s)

1− sτ′(s)
e−ζ(s,t ) d s,

é solução de (2.34), caso contrário, onde ζ(ℓ, t ) =λ τ(t )
τ′(t ) ln(1−ℓτ′(t )), sendo que ambas as soluções

satisfazem
z(x,0) = v(x), para x ∈Ω. (2.36)

Por (2.35), obtemos

z(x,ρ) =λu(x)e−ϑ(ρ,t ) − f1(x,ρ)e−ϑ(ρ,t ) +τ(t )e−ϑ(ρ,t )
∫ ρ

0
f3(x, s)eϑ(s,t ) d s, (2.37)

se τ′(t ) = 0, e

z(x,ρ) =λu(x)eζ(ρ,t ) − f1(x,ρ)eζ(ρ,t ) +eζ(ρ,t )
∫ ρ

0

τ(t ) f3(x, s)

1− sτ′(s)
e−ζ(s,t ) d s, (2.38)

caso contrário.

Em particular, se τ′(t ) = 0 e por (2.37), temos que

z(x,1) =λu(x)e−ϑ(1,t ) − f1(x,1)e−ϑ(1,t ) +τ(t )e−ϑ(1,t )
∫ 1

0
f3(x, s)eϑ(s,t ) d s, (2.39)

e se τ′(t ) ̸= 0 e por (2.38), temos que

z(x,1) =λu(x)eζ(1,t ) − f1(x,1)eζ(1,t ) +eζ(1,t )
∫ 1

0

τ(t ) f3(x, s)

1− sτ′(s)
e−ζ(s,t ) d s. (2.40)

Substituindo (2.35) e z(x,1) em (2.33), obtemos

αu −uxx = g , (2.41)

onde

α := λ2 +λµ1(t )+λµ2(t )N1,

g := f2 +λ f1 +µ1(t ) f1 +µ2(t )N2,

N1 :=
{

e−ϑ(1,t ), se τ′(t ) = 0,

eζ(1,t ), se τ′(t ) ̸= 0,

N2 :=
{

− f1(x,1)e−ϑ(1,t ) +τ(t )e−ϑ(1,t )
∫ 1

0 f3(x, s)eϑ(s,t ) d s, se τ′(t ) = 0,

− f1(x,1)eζ(1,t ) +eζ(1,t )
∫ 1

0
τ(t ) f3(x,s)

1−sτ′(t ) e−ζ(s,t ) d s, se τ′(t ) ̸= 0.

(2.42)
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Resolver a equação (2.41) é equivalente a encontrar u ∈ H 2(Ω)∩H 1
0 (Ω) tal que∫

Ω
αuũ +ux ũx =

∫
Ω

g ũ d x, (2.43)

para todo ũ ∈ H 1
0 (Ω).

Consequentemente, a equação (2.43) é equivalente ao problema

Υ(u, ũ) = L(ũ), (2.44)

onde a forma bilinear
Υ : H 1

0 (Ω)×H 1
0 (Ω) →R

e a forma linear
L : H 1

0 (Ω) →R

são definidas por

Υ(u, ũ) =α
∫
Ω

uũ d x +
∫
Ω

ux ũx d x e L(ũ) =
∫
Ω

g ũx d x.

Facilmente verificamos que Υ é contínua e coerciva, e L é contínua. Daí, aplicando o Teorema de
Lax-Milgram, deduzimos que, para todo ũ ∈ H 1

0 (Ω), o problema (2.44) admite única solução

u ∈ H 1
0 (Ω).

Aplicando a regularidade elíptica clássica, segue de (2.43) que

u ∈ H 2(Ω).

Portanto, o operador λI −A (t ) é sobrejetivo para todo λ> 0 e t > 0. Daí, como κ(t ) > 0, isso prova
que

λI − Ã (t ) = (λ+κ(t )) I −A (t ) é sobrejetiva, (2.45)

para todo λ> 0 e t > 0.

Para completar a prova de (iii), é suficiente mostrar que

∥Φ∥t

∥Φ∥s
≤ e

c
2τ0

|t−s|
, ∀t , s ∈ [0,T ], (2.46)

ondeΦ= (u, v, z)T , c é uma constante positiva e ∥·∥t é a norma associada ao produto interno (2.28).
Para todo t , s ∈ [0,T ], temos que

∥Φ∥2
t −∥Φ∥2

s e
c
τ0

|t−s| =
(
1−e

c
2τ0

|t−s|)(
∥ux∥2

L2(Ω) +∥v∥2
L2(Ω)

)
+

(
ξ(t )τ(t )−ξ(s)τ(s)e

c
τ0

|t−s|)∫
Ω

∫ 1

0
z2(x,ρ, t )dρd x.

É claro que 1−e
c
τ0

|t−s| ≤ 0. Agora, vamos provar que ξ(t )τ(t )−ξ(s)τ(s)e
c
τ0

|t−s| ≤ 0 para algum c > 0.
Para isso, de (2.4) e pelo Teorema do Valor Médio, temos que

τ(t ) = τ(s)+τ′(r )(t − s),
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para algum r ∈]s, t [. Como ξ é uma função não crescente e ξ> 0, segue que

ξ(t )τ(t ) ≤ ξ(s)τ(s)+ξ(s)τ′(r )(t − s),

o que implica
ξ(t )τ(t )

ξ(s)τ(s)
≤ 1+ |τ′(r )|

τ(s)
|t − s|.

Usando (2.4) e o fato que τ′ é limitado, deduzimos que

ξ(t )τ(t )

ξ(s)τ(s)
≤ 1+ c

τ0
|t − s| ≤ e

c
τ0

|t−s|
,

o que prova (2.46) e, portanto, (iii) segue.

(iv) Note que, por (H1), temos que

κ′(t ) = τ′(t )τ′′(t )

2τ(t )
√

1+τ′(t )2
− τ′(t )

√
1+τ′(t )2

2τ(t )2

é limitado em [0,T ] para todo T > 0. Além disso,

d

d t
A (t )U =

(
0,µ′

1(t )−µ′
2(t )z(x,1, t ),

τ′′(t )τ(t )ρ−τ′(t )(τ′(t )ρ−1)

τ(t )2
zρ

)T

,

com τ′′(t )τ(t )ρ−τ′(t )(τ′(t )ρ−1)
τ(t )2 limitado sobre [0,T ] por (H1), e considerando (H2) e (H3), temos que

d

d t
Ã (t ) ∈ L∞

∗ ([0,T ],B(D(A (0)),H )), (2.47)

onde L∞∗ ([0,T ],B(D(A (0)),H )) é o espaço das classes de equivalência de funções essencialmente
limitadas e fortemente mensuráveis de [0,T ] para B(D(A (0)),H ).

Então (2.31), (2.45) e (2.46) implicam que a família Ã = {
Ã (t )/t ∈ [0,T ]

}
é uma família de

geradores estáveis em H com constantes de estabilidade independentes de t , pela Proposição 1.1

em (KATO, 1967). Portanto, as afirmações (i )− (i v) do Teorema 2.5 são verificadas por (2.25), (2.27),
(2.46), (2.31), (2.47) e (2.45), e assim, o problema{

Ũt = Ã (t )Ũ ,

Ũ (0) =U0 = (u0,u1, f0(·,−,τ(0)))T
(2.48)

tem única solução Ũ ∈C ([0,+∞[,D(A (0)))∩C 1 ([0,+∞[,H ) paraU0 ∈ D(A (0)). A solução pedida
de (2.22) é então dada por

U (t ) = e
∫ t

0 κ(s)d sŨ (t ),

pois

Ut (t ) = κ(t )e
∫ t

0 κ(s)d sŨ (t )+e
∫ t

0 κ(s)d sŨt (t )

= e
∫ t

0 κ(s)d s (
κ(t )+ Ã (t )

)
Ũ (t )

=A (t )e
∫ t

0 κ(s)d sŨ (t )

=A (t )U (t ),

o que conclui a prova.
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2.4 Comportamento assintótico

Nesta seção vamos investivar o comportamento assintótico do problema (2.1). O resultado da
estabilidade será obtido usando o Lema 2.2.

Teorema 2.7 (Decaimento exponencial)
Seja (u0,u1, f0(·,−,τ(0))) ∈ H 1

0 (Ω)×L2(Ω)×L2(Ω×]0,1[). Assumindo que as hipóteses (H1), (H2) e
(2.4)-(2.6) são válidas. Então o problema (2.1) admite única solução

u ∈C ([0,+∞[, H 1
0 (Ω))∩C 1([0,+∞[,L2(Ω)),

z ∈C ([0,+∞[,L2(Ω)×]0,1[).

Além disso, para constantes positivas c e α, obtemos a seguinte propriedade de decaimento:

E(t ) ≤ cE(0)e−αt , ∀t ≥ 0.

Demonstração. De agora em diante, denotamos por c várias constantes positivas que podem ser
diferentes em diferentes ocorrências.

Dado 0 ≤ S < T <∞, começamos multiplicando a primeira equação de (2.11) por uE q e então
integrando sobre (S,T )×Ω, obtemos∫ T

S
E q

∫
Ω

u
(
ut t −uxx +µ1(t )ut +µ2(t )z(x,1, t )

)
d x d t = 0.

Note que

ut t u = (ut u)t −u2
t .

Daí, usando integração por partes e as condições de fronteira, temos que

0 =
[

E q (t )
∫
Ω

uut d x

]T

S
−

∫ T

S
qE q−1(t )E ′(t )

∫
Ω

uut d x d t

−
∫ T

S
E q (t )∥ut∥2

L2(Ω) d t +
∫ T

S
E q (t )∥ux∥2

L2(Ω) d t

+
∫ T

S
E q (t )

∫
Ω
µ1(t )uut d x d t +

∫ T

S
E q (t )

∫
Ω
µ2(t )uz(x,1, t )d x d t .

(2.49)

Analogamente, multiplicando a segunda equação de (2.11) por E qξ(t )e−2ρτ(t )z(x,ρ, t ) e então inte-
grando sobre Ω× (0,1)× (S,T ), vemos que

0 =
∫ T

S

∫
Ω

∫ 1

0
E q (t )ξ(t )e−2ρτ(t )z(x,ρ, t )

(
τ(t )zt (x,ρ, t )+ (

1−ρτ′(t )
)

zρ(x,ρ, t )
)

dρd x d t

= 1

2

∫
Ω

∫ 1

0

∫ T

S
E q (t )ξ(t )e−2ρτ(t ) ∂

∂t
z2(x,ρ, t )d t dρd x

+ 1

2

∫ T

S
E q (t )ξ(t )

∫
Ω

∫ 1

0
e−2ρτ(t ) (1−ρτ′(t )

) ∂

∂ρ
z2(x,ρ, t )dρd x d t .



2.4. Comportamento assintótico 29

Usando integração por partes e as condições de fronteira, segue que

0 =
[
ξ(t )τ(t )

2
E q (t )

∫
Ω

∫ 1

0
e−2ρτ(t )z2(x,ρ, t )dρd x

]T

S

− 1

2

∫ T

S
qE q−1(t )E ′(t )ξ(t )τ(t )

∫
Ω

∫ 1

0
e−2ρτ(t )z2(x,ρ, t )dρd x d t

− 1

2

∫ T

S
qE q (t )ξ′(t )τ(t )

∫
Ω

∫ 1

0
e−2ρτ(t )z2(x,ρ, t )dρd x d t

+ 1

2

∫ T

S
E q (t )ξ(t )

∫
Ω

[
e−2ρτ(t ) (1−τ′(t )

)
z2(x,1, t )− z2(x,0, t )

]
d x d t

+
∫ T

S
E q (t )ξ(t )τ(t )

∫
Ω

∫ 1

0
e−2ρτ(t )z2(x,ρ, t )dρd x d t .

(2.50)

Como µ1 é uma função não crescente de classe C1(R), sua derivada é não positiva, o que implica
que ξ′(t ) ≤ 0. Então temos o seguinte resultado∫ T

S
qE q (t )ξ′(t )τ(t )

∫
Ω

∫ 1

0
e−2ρτ(t )z2(x,ρ, t )dρd x d t ≤ 0. (2.51)

Além disso, como

−1

2

∫ T

S
E q (t )ξ(t )

∫
Ω

e−2ρτ(t ) (1−τ′(t )
)

z2(x,1, t )d x d t ≤ 0, (2.52)

então, por (2.50), (2.51) e (2.52), temos que∫ T

S
E q (t )ξ(t )τ(t )

∫
Ω

∫ 1

0
e−2ρτ(t )z2(x,ρ, t )dρd x d t

≤−
[
ξ(t )τ(t )

2
E q (t )

∫
Ω

∫ 1

0
e−2ρτ(t )z2(x,ρ, t )dρd x

]T

S

+ 1

2

∫ T

S
qE q−1(t )E ′(t )ξ(t )τ(t )

∫
Ω

∫ 1

0
e−2ρτ(t )z2 dρd x d t

− 1

2

∫ T

S
E q (t )ξ(t )

∫
Ω

z2(x,0, t )d x d t .

(2.53)

Usando a definição do funcional de energia (2.14), (2.49) e (2.53), segue que

γ0

∫ T

S
E q+1 d t ≤−

[
E q (t )

∫
Ω

uut d x

]T

S
−

[
ξ(t )τ(t )

2
E q (t )

∫
Ω

∫ 1

0
e−2ρτ(t )z2(x,ρ, t )dρd x

]T

S

+q
∫ T

S
E q−1(t )E ′(t )

∫
Ω

uut d x d t

+q
∫ T

S

ξ(t )τ(t )

2
E q−1(t )E ′(t )

∫
Ω

∫ 1

0
e−2ρτ(t )z2(x,ρ, t )dρd x d t

+2
∫ T

S
E q (t )∥ut∥2

L2(Ω) d t −
∫ T

S
E q (t )

∫
Ω
µ1(t )uut d x d t

−
∫ T

S
E q (t )

∫
Ω
µ2(t )uz(x,1, t )d x d t

+ 1

2

∫ T

S
ξ(t )E q (t )e−2ρτ(t )

∫
Ω

z2(x,0, t )d x d t ,

(2.54)

onde γ0 = 2min{1,e−2τ1 }.
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Usando as desigualdades de Young e Sobolev-Poincaré, e o Lema 2.3, obtemos que

−
[

E q (t )
∫
Ω

uut d x

]T

S
≤ E q (S)

∫
Ω

u(x,S)ut (x,S)d x −E q (T )
∫
Ω

u(x,T )ut (x,T )d x

≤ cE q+1(S).

Agora, observe que

−
[
ξ(t )τ(t )

2
E q (t )

∫
Ω

∫ 1

0
dρd xe−2ρτ(t )z2(x,ρ, t )dρd x

]T

S
≤ ξ(S)τ(S)

2
E q (S)

∫
Ω

∫ 1

0
e−2ρτ(S)z2(x,ρ,S)

≤ cE q (S)ξ(S)τ(S)
∫
Ω

∫ 1

0
z2(x,ρ,S)dρd x

≤ cE q+1(S).

Por (2.17), temos que∫ T

S
E q−1(t )E ′(t )

∫
Ω

uut d x d t ≤ c
∫ T

S
(−E ′(t ))E q (t )d t ≤ cE q+1(S).

Analogamente,∫ T

S
E q−1(t )E ′(t )

ξ(t )τ(t )

2

∫
Ω

∫ 1

0
e−2ρτ(t )z2(x,ρ, t )dρd x d t ≤ cE q+1(S).

Pelo Lema 2.4, deduzimos que∫ T

S
E q (t )∥ut∥2

L2(Ω) d t ≤−c
∫ T

S
E q (t )E ′(t )d t ≤ cE q+1(S).

Agora, obtemos que∣∣∣∣∫ T

S
E q (t )

∫
Ω
µ1(t )uut d x d t

∣∣∣∣≤µ1(0)

∣∣∣∣∫ T

S
E q (t )

∫
Ω

uut d x d t

∣∣∣∣
≤ c(ε1)

∫ T

S
E q (t )

∫
Ω

u2
t d x d t +ε1

∫ T

S
E q (t )

∫
Ω

u2
x d x d t

≤ c(ε1)
∫ T

S
E q (t )(−E ′(t ))d t +ε1

∫ T

S
E q (t )E(t )d t

≤ c(ε1)E q+1(S)+ε1

∫ T

S
E q+1(t )d t

(2.55)

e por (H2), segue que∣∣∣∣∫ T

S
E q (t )

∫
Ω
µ2(t )uz(x,1, t )d x d t

∣∣∣∣≤βµ1(0)

∣∣∣∣∫ T

S
E q (t )

∫
Ω
ϕz(x,1, t )d x d t

∣∣∣∣
≤ c(ε2)E q+1(S)+ε2

∫ T

S
E q+1(t )d t .

(2.56)

Finalmente,

1

2

∫ T

S
E q (t )ξ(t )

∫
Ω

z2(x,0, t )d x d t ≤ ξ̄µ1(0)

2

∫ T

S
E q (t )∥ut∥2

L2(Ω) d t

≤ c
∫ T

S
E q (t )(−E ′(t ))d t ≤ cE q+1(S).
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Escolhendo ε1 e ε2 suficientemente pequeno, deduzimos de (2.55) e (2.56) que∫ T

S
E q+1 d t ≤ 1

γ
E q+1(S).

Como E(S) ≤ E(0) para S ≥ 0, temos que∫ T

S
E q+1 d t ≤ 1

γ
E(0)E q (S).

Escolhendo q = 0, concluímos do Lema 2.2 que

E(t ) ≤ E(0)e1−γt .

Isso encerra a prova do teorema.
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Capítulo 3

Estabilização de solos elásticos porosos incha-
dos com saturação de fluido, retardo e pesos
não constantes

3.1 Introdução

Materiais porosos consistem em uma estrutura composta por um oumais componentes sólidos
capazes de fornecer uma resposta mensurável em macroescala, dependendo das interações de
diferentes fases e estruturas emmicroescala. Por esta razão, várias teorias de como o comportamento
macroscópico emerge das interaçõesmicroscópicas paramodelar e quantificar a resposta domaterial.

Teorias distintas que descrevem a física de sistemas multicomponentes são estudados por
uma linha de pesquisa chamada teoria da mistura. A teoria da mistura pode ser usada para modelar
uma ampla gama de diferentes materiais porosos. A figura abaixo ilustra processo de inchamento,
onde as camadas de argila preenchidas por cátions metálicos entram em contato com moléculas de
água, promovendo inchaço da estrutura.. Portanto, é interessante buscar abordagens e diferentes
métodos para descrever a cinemática e as leis do equilíbrio, podemos citar os trabalhos de R.J. Atkin
e R.E. Craine (ATKIN; CRAINE, 1976), A. Bedford e D. Drumheller (BEDFORD; DRUMHELLER, 1983) e V.
Klika (KLIKA, 2013).

A.C. Eringen (ERINGEN, 1994) usou a teoria damistura paramodelar o problema do inchamento
do solo, mais precisamente, ele considerou o sistema dado por

ρ
f
0 ü

f +σ f f ∇∇·u f +σ f ∇∇·us + (α f +γ f )∇T +ξ f f (u̇ f − u̇s)−ρ f
0 f

f = 0,

ρs
0ü

s +σ f ∇∇·u f − (γ f −α0)∇T − (λ+µ)∇∇·us −µ∇·∇us −ξ f f (u̇ f − u̇s)−ρs
0f

s = 0,

α1Ṫ+
(
α f +ξ f /T0

)
∇· u̇ f +

(
α0 −ξ f /T0

)
∇· u̇s − K

T0
∇2T− ρ0h

T0
= 0,

(3.1)

onde os sobrescritos f e s denotam o fluido e o sólido elástico, respectivamente. Consequentemente,
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Figura 1 – O processo de inchamento da argila. Crédito para P. T. P. Aum.

u f e us representam os deslocamentos do fluido e do material sólido respectivamente e T é a
mudança de temperatura para uma temperatura ambiente T0. As funções f f , fs e h representam
as forças externas, ρ f

0 e ρs
0 são as densidades de cada constituinte, λ> 0, µ> 0, σ f < 0, σ f f < 0 e

ξ f f > 0 são as constantes constitutivas, α0 > 0, α1 > 0, α f > 0, ζ f > 0 e γ f > 0 são as constantes do
material e K a constante de condutividade térmica. É importante considerar a relação K /T0 ≥ 0 e
K ξ f f /T0 ≥ (γ f +ξ f /T0)2/4.

O estudo do comportamento de solos argilosos em expansão é de suma importância emmuitos
aspectos da vida cotidiana, pois são responsáveis por muitas reações e processos. Por exemplo,
as argilas compactadas desempenham um papel importante na prevenção do movimento da água
através de buracos e rachaduras. No contexto da produção de petróleo e gás, as lamas de perfu-
ração desempenham um papel importante (KARABOMI et al., 1996; WILCOX, 1990). Segundo W.
Wray (WRAY, 1995), a expansão das argilas também desempenha um papel crítico na construção
de fundações, pontes e rodovias, pois os solos expansivos variam em volume conforme o teor de
umidade aumenta ou diminui. Desta forma, um modelo preciso, capaz de prever o inchamento de
argilas será de grande utilidade na engenharia e ciência do solo. Com base no importante trabalho
de A.C. Eringen (ERINGEN, 1994), muitos autores (QUINTANILLA, 2002a; WANG; GUO, 2006; QUIN-
TANILLA, 2002b; QUINTANILLA, 2004; BOFILL; QUINTANILLA, 2003) estudaram o comportamento de
problemas relacionados ao inchamento do solo. Por exemplo, R. Quintanilla considerou o sistema
unidimensional na teoria isotérmica linear de solos elásticos porosos inchados dado por

ρz zt t −a1zxx −a2uxx +ξ(zt −ut )−µz zxxt = 0,

ρuut t −µuxx −a2zxx −ξ(zt −ut ) = 0,
(3.2)

onde as variáveis dependentes z = z(x, t) e u = u(x, t) representam o deslocamento do fluido e
do material sólido elástico, respectivamente. As constantes ρz e ρu são as densidades de cada
constituinte e as constantes a1, a2 e µ representam as constantes constitutivas da teoria e eles
satisfazem a2

2 ≤ a1µ. Nesse trabalho, o autor provou a estabilidade exponencial usando o método da
energia e mostrou que os termos dissipativos ±ξ(zt −ut ) e µz zxxt , com ξ> 0 e µz > 0 são suficientes
para estabelecer o resultado. Por outro lado, J-M.Wang e B-Z. Guo (WANG; GUO, 2006) consideraram
um problema de inchamento dos solos elásticos porosos unidimensionais com amortecimento na
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equação do deslocamento do fluido

ρz zt t −a1zxx −a2uxx −ρzγ(x)zt = 0,

ρuut t −µuxx −a2zxx = 0,
(3.3)

e provou que o sistema é exponencialmente estável usando o método espectral.

Recentemente, A. Ramos et al. (RAMOS et al., 2020) consideraram o sistema fracamente
dissipativo

ρz zt t −a1zxx −a2uxx = 0,

ρuut t −a3uxx −a2zxx +γ(t )g (ut ) = 0,
(3.4)

com amortecimento não linear. Eles estabeleceram uma taxa de decaimento exponencial, usando um
método multiplicador e algumas propriedades de funções convexas sem impor nenhuma suposição
restritiva de crescimento próximo à origem no termo de amortecimento, desde que as velocidades
de onda do sistema sejam iguais.

Na modelagem de problemas envolvendo inchamento de solos argilosos, é de extrema impor-
tância ter uma descrição adequada do comportamento microscópico da água absorvida (água entre
as plaquetas). Sabemos que o processo de consolidação geralmente envolve duas etapas, que são
as diferentes taxas de compressão, a primária e a secundária. Na fase primária, a pressão da fase
de volume é gradualmente transferida para o esforço efetivo, enquanto na compressão secundária
ocorre uma deformação contínua depois que a água em massa é substancialmente drenada. Sendo
assim, ambos podem ocorrer simultaneamente.

Devido a fatores intrínsecos que caracterizam o comportamento viscoso à fluência da estrutura
argilosa no estágio secundário, ainda não há um entendimento completo dos mecanismos subjacen-
tes a este fenômeno. No entanto, A. Sridharan e G.V. Rao (SRIDHARAN; RAO, 1982) sugeriram que a
compressão secundária está relacionada à deformação retardada da partícula de argila após a água
bruta ser drenada dos poros na estrutura primária (T. Hueckel (HUECKEL, 1992)). Esta deformação
secundária surge devido ao atraso na drenagem da água absorvida em relação ao fluxo da fase de
massa. Desta forma, é natural que queiramos estudar o comportamento dos sistemas de dilatação
do solo considerando os efeitos do atraso no deslocamento do fluido.

Em trabalho recente, A. Ramos et al. (RAMOS et al., 2021), consideraram o problema de
inchamento em solos elásticos porosos com saturação de fluido, amortecimento viscoso e um
retardo com tempo de atraso constante, dado por

ρz zt t −a1zxx −a2uxx +ξ1zt +ξ2zt (x, t −τ) = 0,

ρuut t −a3uxx −a2zxx = 0.
(3.5)

Eles estudaram a solução global do problema com base na teoria dos semigrupos e mostraram que a
energia associada ao sistema é dissipativa e estabeleceram a estabilidade do sistema exponencial-
mente. No contexto de modelos que consistem em equações diferenciais parciais, quando inserimos
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termos de retroalimentação de atraso em modelos estáveis, eles podem se tornar instáveis (DATKO;
LAGNESE; POLIS, 1986b; DATKO, 1988; NICAISE; PIGNOTTI, 2006). Portanto, para esses tipos de
modelos (formados por equações diferenciais parciais) devemos ter o cuidado de analisar cada caso.
Vejamos a seguir, alguns trabalhos relacionados, importantes por si só e que enriquecem a teoria.

S. Nicaise et al. em (NICAISE; PIGNOTTI; VALEIN, 2011), estudaram a seguinte equação de onda
com atraso variável no tempo de limite

ut t −∆u = 0 em Ω× (0,∞),

u = 0 em ΓD × (0,∞),

∂u

∂ν
=−µ1ut −µ2ut (x, t −τ(t )) = 0 em ΓN × (0,∞),

u(x,0) = u0(x) e ut (x,0) = u1(x) em Ω,

ut (x, t −τ(0)) = f0(x, t −τ(0)) em ΓN × (0,τ(0)),

(3.6)

ondeΩ⊂Rn é domínio limitado e suave, µ1 e µ2 são constantes positivas, ν(x) representam o vetor
normal da unidade externa ao ponto x ∈ Γ e ∂u

∂ν é a derivada normal, Γ= ΓD ∪ΓN é o limite de Ω.
No trabalho, considerou-se

τ ∈W 2,∞([0,T ]), ∀T > 0, (3.7)

0 < τ0 ≤ τ(t ) ≤ τ, ∀t > 0, (3.8)

para algumas constantes τ0 e τ e existe d > 0 tal que

µ2 <
p

1−dµ1 (3.9)

com

τ′(t ) ≤ d < 1, ∀t > 0. (3.10)

Com essas suposições, os autores mostraram que o sistema é exponencialmente estável.

M. Kirane et al. em (KIRANE; SAID-HOUARI; ANWAR, 2011), consideraram o seguinte modelo
de viga Timoshenko unidimensional com retardo variável τ(t ) na equação do ângulo de rotação

ρ1ϕt t −κ(ϕx +ψ)x = 0 em (0,1)× (0,∞),

ρ2ψt t −bψxx +κ(ϕx +ψ)+µ1ψt +µ2ψt (x, t −τ(t )) = 0 em (0,1)× (0,∞),
(3.11)

onde ρ1, ρ2, κ e b são constantes positivas relacionadas às propriedades físicas do feixe, a função
de atraso τ(t) satisfaz (3.7), (3.8) e (3.10). Os autores mostraram que se (3.9) e ρ1/κ= ρ2/b forem
válidos, então o sistema é exponencialmente estável.

A. Benaissa et al. em (BENAISSA; BENGUESSOUM; MESSAOUDI, 2014) consideraram a seguinte
equação de onda com retardo e pesos de amortecimento dependendo do tempo

ut t −∆u +µ1(t )ut +µ2(t )ut (x, t −τ) = 0 em Ω× (0,∞),

u = 0 em Γ× (0,∞),

u(x,0) = u0(x) e ut (x,0) = u1(x) em Ω,

ut (x, t −τ(0)) = f0(x, t −τ(0)) em Ω× (0,τ(0)),

(3.12)
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ondeΩ⊂Rn é um domínio limitado com limite Γ. Ao contrário de trabalhos anteriores, os amorteci-
mentos µ1 e µ2 dependem do tempo t , porém, o tempo de retardo τ é constante. Sob suposições
apropriadas sobre os pesos do amortecimento µ1 e µ2, os autores obtiveram o decaimento expo-
nencial da energia do sistema. Já V. Barros et al. em (BARROS; NONATO; RAPOSO, 2020) estudaram
o problema (3.12) com Ω= (0,L) ⊂R e τ= τ(t) a função dependente do tempo t . Sob premissas
apropriadas para µ1(t ) e µ2(t ) e considerando (3.7), (3.8) e (3.10) os autores mostraram que a energia
do sistema decai exponencialmente. Nossa intenção ao citar os três últimos trabalhos foi mostrar
situações em que o feedback de atraso dependente do tempo aparece τ= τ(t ) bem como mostrar
situações em que o peso do amortecimento pode variar, o que torna o problema mais complicado,
sem dúvidas, mais atraente e desafiador. Existem inúmeros estudos sobre a estabilidade exponencial
de sistemas lineares considerando o caso em que o atraso é constante (APALARA, 2016; FENG;
PELICER, 2017; KIRANE; SAID-HOUARI, 2011; NICAISE; PIGNOTTI, 2006; NICAISE; PIGNOTTI, 2011;
RAPOSO; APALARA; RIBEIRO, 2018; RAPOSO et al., 2013; SAID-HOUARI; LASKRI, 2010; XU; YUNG;
LI, 2006). Existem também vários estudos considerando modelos não lineares com atraso onde a
existência de atratores é investigada, entre eles, sistemas de Timoshenko (SANTOS et al., 2020; FENG;
YANG, 2017; RAMOS et al., 2019; YANG; ZHANG; LU, 2021), sistemas poroelásticos (SANTOS et al.,
1920) e ponte suspensa (PARK, 2018; WANG; MA, 2019). Com base no trabalho mencionado acima
sobre o problema de inchamento dos solos elásticos porosos unidimensionais e nas referências
(BARROS; NONATO; RAPOSO, 2020; NONATO; SANTOS; RAPOSO, 2022; NONATO; RAPOSO; FENG,
2022), projetamos e propomos estudar a estabilidade exponencial para o seguinte sistema

ρz zt t −a1zxx −a2uxx +µ1(t )zt +µ2(t )zt (x, t −τ(t )) = 0 em (0,L)× (0,∞),

ρuut t −a3uxx −a2zxx = 0 em (0,L)× (0,∞),
(3.13)

com condições de fronteira dadas por

z(0, t ) = zx(L, t ) = u(0, t ) = ux(L, t ) = 0, ∀ t ≥ 0, (3.14)

e condições iniciais

z(x,0) = z0(x), zt (x,0) = z1(x), u(x,0) = u0(x), ut (x,0) = u1(x), x ∈ (0,L),

zt (x,−sτ(0)) = z2(x, s), (x, s) ∈ (0,L)× (0,1),
(3.15)

onde z0, z1, z2, u0, u1 são funções conhecidas pertencentes a espaços funcionais apropriados. Em
(3.13), estamos admitindo que o retardo está sendo considerado no deslocamento do fluido, isso nos
parecemuito natural, pois segundo A. Sridharan e G.V. Rao (SRIDHARAN; RAO, 1982), a compressão da
deformação secundária ocorre de alguma forma devido ao atraso na drenagem da água absorvida em
relação ao fluxo da fase do volume. Neste trabalho, obtemos o resultado do decaimento exponencial
sem impor uma condição às velocidades de onda a1/ρz = a2/ρu do sistema. Este é um resultado
surpreendente e inesperado em comparação com o sistema Timoshenko, sistemas elásticos porosos
e outros sistemas com amortecimentos semelhantes.

A parte restante deste capítulo está organizado da seguinte forma: na Seção 3.2, estipulamos
as hipóteses para as funções presentes em (3.13) bem como, através de uma mudança de variável,
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obteremos um sistema equivalente a (3.13). Na Seção 3.3, usando a teoria de semigrupo de opera-
dores lineares encontrada em (KATO, 2011), a questão da existência, unicidade e regularidade da
solução será abordada. Por fim, na Seção 3.4, obteremos o principal resultado deste trabalho, que é
a prova do decaimento exponencial para o sistema (3.13).

3.2 Preliminares

Vamos considerar as seguintes hipóteses:

(A1) A função de retardo τ= τ(t ), satisfaz

τ ∈W 2,∞([0,T ]), ∀T > 0. (3.16)

Existem constantes positivas τ0, τ1 e d , satisfazendo

0 < τ0 ≤ τ(t ) ≤ τ1, ∀t > 0 (3.17)

e

τ′(t ) ≤ d < 1, ∀t > 0; (3.18)

(A2) µ1 :R+ → (0,+∞) é uma função não crescente da classe C 1(R+). Além disso, existem constan-
tes µ0 e M1 > 0, tais que ∣∣∣∣µ′

1(t )

µ1(t )

∣∣∣∣≤ M1, 0 <µ0 <µ1(t ), ∀t ≥ 0; (3.19)

(A3) µ2 :R+ →R é uma função de classe C 1(R+), o que não é necessariamente positiva ou monó-
tona. Além disso, existem constantes M2 > 0 e δ, com 0 < δ<p

1−d , tais que

|µ2(t )| ≤ δµ1(t ) (3.20)

e

|µ′
2(t )| ≤ M2µ1(t ). (3.21)

Como foi feito em (NICAISE; PIGNOTTI; VALEIN, 2011), introduzimos uma nova variável (inde-
pendente) dada por

η(x, y, t ) = zt (x, t −τ(t )y), (x, y, t ) ∈ (0,L)× (0,1)× (0,∞). (3.22)

Verifica-se facilmente que z satisfaz

τ(t )ηt (x, y, t )+ (1−τ′(t )y)ηy (x, y, t ) = 0. (3.23)
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Portanto, usando (3.22) e (3.23) podemos reescrever (3.13) da seguinte forma

ρz zt t −a1zxx −a2uxx +µ1(t )zt +µ2(t )η(x,1, t ) = 0 em (0,L)× (0,∞),

ρuut t −a3uxx −a2zxx = 0 em (0,L)× (0,∞),

τ(t )ηt + (1−τ′(t )y)ηy = 0 em (0,L)× (0,1)× (0,∞),

(3.24)

sujeito a condições de fronteira dadas por

z(0, t ) = u(0, t ) = zx(L, t ) = ux(L, t ) = 0 (3.25)

e condições iniciais

z(x,0) = z0(x), zt (x,0) = z1(x), u(x,0) = u0(x), ut (x,0) = u1(x) em (0,L),

η(x, y,0) = z2(x, y) em (0,L)× (0,1).
(3.26)

3.3 Solução global

Nesta seção, usando a teoria de semigrupos de operadores lineares encontrada em (KATO,
2011), um resultado de existência, unicidade e regularidade será obtido para o problema (3.24)–(3.26).
Procedimentos semelhantes são encontrados no capítulo anterior ou em diversos trabalhos, como
(KIRANE; SAID-HOUARI; ANWAR, 2011; LIU; CHEN, 2017; NICAISE; PIGNOTTI; VALEIN, 2011).

Em primeiro lugar, considere os seguintes espaços

H∗(0,L) = {
ϕ :ϕ ∈ H 1(0,L),ϕ(0) = 0

}
(3.27)

e

H = H∗(0,L)×L2(0,L)×H∗(0,L)×L2(0,L)×L2((0,L)× (0,1)). (3.28)

Definimos em H o seguinte produto interno

〈U ,Ũ 〉H = ρz

∫ L

0
w w̃ d x +ρu

∫ L

0
v ṽ d x + (

a1 −a2
2/a3

)∫ L

0
zx z̃x d x

+
∫ L

0

(
a2p
a3

zx +p
a3ux

)(
a2p
a3

z̃x +p
a3ũx

)
d x +

∫ L

0

∫ 1

0
ηη̃d y d x,

(3.29)

para qualquerU = (z, w,u, v,η), Ũ = (z̃, w̃ , ũ, ṽ , η̃) em H , onde w = zt e v = ut .

Introduzindo U (t) = (z(t), w(t),u(t), v(t),η(t))T e U0 = (z0, z1,u0,u1, z2)T , o sistema (3.24)–
(3.26) pode ser escrito como o seguinte problema abstrato de valor inicial em H{

Ut (t ) = A (t )U (t ), t > 0,

U (0) = U0,
(3.30)
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onde o operador A (t ) : D(A (t )) ⊂H →H é dado por

A (t )



z

w

u

v

η


=



w

ρ−1
z (a1zxx +a2uxx −µ1(t )w −µ2(t )η(·,1))

v

ρ−1
u (a3uxx +a2zxx)

−1−τ′(t )y
τ(t ) ηy


, (3.31)

com

D(A (t )) =
{

(z, w,u, v,η) ∈H , z,u ∈ H 2(0,L)∩H∗(0,L), w, v ∈ H∗(0,L), zx(L) = ux(L) = 0,

η ∈ L2(0,1; H 1
0 (0,L)

)
, η(·,0) = w

}
.

(3.32)

Note que D(A (t )) é independente de t , isto é,

D(A (t )) = D(A (0)), ∀t > 0. (3.33)

Como foi feito no capítulo anterior, usaremos o teorema introduzido por Tosio Kato para obter
o resultado de existência e unicidade:

Teorema 3.1
Assuma que

(i) Y = D(A (0)) é denso em H ;

(ii) D(A (t )) = D(A (0)), ∀t > 0;

(iii) Para todo t ∈ [0,T ], A (t) gera um semigrupo fortemente contínuo em H e a família A =
{A (t ); t ∈ [0,T ]} é estável com estabilidade constantes C e m independentes de t (ou seja, o
semigrupo (St (s))s≥0 gerado por A (t ) satisfaz ∥St (s)W ∥H ≤Cems∥W ∥H , para todo W ∈H

e s ≥ 0);

(iv) ∂tA (t) pertence a L∞∗ ([0,T ],B(Y ,H )), que é o espaço das equivalente classes de funções
essencialmente limitadas e fortemente mensuráveis de [0,T ] para o conjunto B(Y ,H ) de
operadores limitados de Y para H .

Então o problema (3.30) tem uma única solução

U ∈C
(
[0,T );Y

)
∩C 1

(
[0,T );H

)
, (3.34)

para qualquer dado inicial em Y .

Desta forma, estamos prontos para enunciar e provar o principal resultado desta seção, que é:

Teorema 3.2 (Solução global)
Para qualquerU0 ∈ D(A (0)), existe uma única soluçãoU de (3.30) que satisfaz

U ∈C
(
[0,+∞);D(A (0))

)
∩C 1

(
[0,+∞);H

)
. (3.35)
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Demonstração. Devemos mostrar que A (t ) atende às condições do Teorema 3.1. Na verdade,

(i) Essa condição pode ser comprovada usando argumentos análogos feitos no capítulo anterior
ou aos encontrados em (KIRANE; SAID-HOUARI; ANWAR, 2011; LIU; CHEN, 2017; NICAISE; PIGNOTTI,
2011; NICAISE; PIGNOTTI; VALEIN, 2011).

(ii) Foi observado em (3.33).

(iii) Para mostrar que o operador A (t ) gera um semigrupo C0 em H , dado t , introduzimos o
produto interno dependente do tempo em H (este produto interno é equivalente a (3.29))

〈U ,Ũ 〉t = ρz

∫ L

0
w w̃ d x +ρu

∫ L

0
v ṽ d x + (

a1 −a2
2/a3

)∫ L

0
zx z̃x d x

+
∫ L

0

(
a2p
a3

zx +p
a3ux

)(
a2p
a3

z̃x +p
a3ũx

)
d x +ξ(t )τ(t )

∫ L

0

∫ 1

0
ηη̃d y d x,

(3.36)

para qualquerU = (z, w,u, v,η), Ũ = (z̃, w̃ , ũ, ṽ , η̃) em H , onde

ξ(t ) = ξµ1(t ) (3.37)

e ξ é uma constante positiva tal que

δp
1−d

< ξ̄< 2− δp
1−d

. (3.38)

Note que

〈A (t )U ,U 〉t = −µ1(t )
∫ L

0
w 2 d x −µ2(t )

∫ L

0
η(x,1)w d x

− ξ(t )

2

∫ L

0

∫ 1

0
(1−τ′(t )y)

∂

∂y
η2(x, y)d y d x,

(3.39)

para qualquerU = (z, w,u, v,η)T ∈ D(A (t )). Como

(1−τ′(t )y)
∂

∂y
η2 = ∂

∂y

(
(1−τ′(t )y)η2)+τ′(t )η2, (3.40)

por (3.39) e (3.40), temos que

〈A (t )U ,U 〉t =−µ1(t )
∫ L

0
w 2 d x −µ2(t )

∫ L

0
η(x,1)w d x + ξ(t )

2

∫ L

0
w 2 d x

− ξ(t )(1−τ′(t ))

2

∫ L

0
η2(x,1)d x − ξ(t )τ′(t )

2

∫ L

0

∫ 1

0
η2 d y d x.

(3.41)

Agora, aplicando a desigualdade de Young ao segundo termo do lado direito de (3.41), obtemos que

〈A (t )U ,U 〉t ≤−
(
µ1(t )− ξ(t )

2
− |µ2(t )|

2
p

1−d

)∫ L

0
w 2 d x

−
(
ξ(t )

2
− ξ(t )τ′(t )

2
− |µ2(t )|p1−d

2

)∫ L

0
η2(x,1)d x

+ ξ(t )|τ′(t )|
2τ(t )

τ(t )
∫ L

0

∫ 1

0
η2 d y d x.

(3.42)
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Por (A3) e (3.37), segue que

〈A (t )U ,U 〉t ≤−µ1(t )

(
1− ξ

2
− δ

2
p

1−d

)∫ L

0
w 2 d x

−µ1(t )

(
ξ(1−τ′(t ))

2
− δ

p
1−d

2

)∫ L

0
η2(x,1)d x

+κ(t )〈U ,U 〉t ,

(3.43)

onde

κ(t ) =
√

1+τ′(t )2

2τ(t )
. (3.44)

Por (3.17), (3.18) e (3.38), temos que

1− ξ

2
− δ

2
p

1−d
> 0 e

ξ(1−τ′(t ))

2
− δ

p
1−d

2
> 0. (3.45)

Portanto, concluímos que
〈A (t )U ,U 〉t −κ(t )〈U ,U 〉t ≤ 0, (3.46)

o que significa que o operador Ã (t ) =A (t )−κ(t )I é dissipativo (nos próximos passos usaremos Ã

como um pivô para então recuperar as propriedades pretendidas de A ).

Agora, vamos provar a sobrejetividade do operador λI −A (t ), para t > 0 fixo. Para isso, dado
F = ( f1, f2, f3, f4, f5)T ∈H , buscamosU = (z, w,u, v,η)T em D(A (t )) que é solução de

(λI −A (t ))U = F, (3.47)

isto é, as entradas deU satisfazem o sistema de equações

λz −w = f1, (3.48)

λρz w −a1zxx −a2uxx +µ1(t )w +µ2(t )η(x,1) = ρz f2, (3.49)

λu − v = f3, (3.50)

λρu v −a3uxx −a2zxx = ρu f4, (3.51)

λτ(t )z + (1−τ′(t )y)ηy = τ(t ) f5. (3.52)

Suponha que encontramos z, u com a regularidade apropriada. Portanto, de (3.48) e (3.50), temos
que

w = λz − f1, (3.53)

v = λu − f3. (3.54)

É claro que w, v ∈ H∗(0,L). Além disso, se τ′(t ) = 0, então

η(x, y) = w(x)e−λτ(t )y +τ(t )e−λτ(t )y
∫ y

0
f5(x, s)eλτ(t )s d s (3.55)
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é solução de (3.52) satisfazendo

η(x,0) = w(x). (3.56)

Por outro lado,

η(x, y) = w(x)eσ(y,t ) +τ(t )eσ(y,t )
∫ y

0

f5(x, s)

1−τ′(t )s
e−σ(s,t ) d s, (3.57)

onde

σ(y, t ) = λτ(t )

τ′(t )
ln(1−τ′(t )y), (3.58)

é solução de (3.52) satisfazendo (3.56). A partir de agora, para fins de praticidade, vamos considerar
τ′(t ) = 0 (o caso τ(t ) ̸= 0 é análogo), desta forma temos (levando em conta (3.53))

η(x,1) = we−λτ(t ) +τ(t )e−λτ(t )
∫ 1

0
f5(x, s)eλτ(t )s d s

= (λz − f1)e−λτ(t ) +τ(t )e−λτ(t )
∫ 1

0
f5(x, s)eλτ(t )s d s

= λze−λτ(t ) − f1e−λτ(t ) +τ(t )e−λτ(t )
∫ 1

0
f5(x, s)eλτ(t )s d s.

(3.59)

Substituindo (3.53) e (3.59) em (3.49), e (3.54) em (3.51), obtemos

αz −a1zxx −a2uxx = g1,

λ2ρuu −a3uxx −a2zxx = g2,
(3.60)

onde

α := λ2ρz +λµ1(t )+λµ2(t )e−λτ(t ),

g1 := ρz f2 +λρz f1 +µ1(t ) f1 +µ2(t ) f1e−λτ(t ) −µ2(t )τ(t )e−λτ(t )
∫ 1

0
f5(x, s)eλτ(t )s d s,

g2 := ρu f4 +λρu f3.

(3.61)

Para resolver (3.60), usamos um procedimento padrão, considerando a forma bilinearΥ : ((H∗(0,L)×
H∗(0,L))2 →R, dada por

Υ((z,u), (z̃, ũ)) = α

∫ L

0
zz̃d x +a1

∫ L

0
zx z̃x d x +a2

∫ L

0
ux z̃x d x

+λ2ρu

∫ L

0
uũ d x +a3

∫ L

0
ux ũx d x +a2

∫ L

0
zx ũx d x.

(3.62)

Não é difícil mostrar que Υ é contínuo e coercitivo, então aplicando o Teorema de Lax-Milgram,
obtemos uma solução para (z,u) ∈ H∗(0,L)×H∗(0,L) para (3.60). Além disso, segue de (3.49) e
(3.51) que z,u ∈ H 2(0,L) e então (z, w,u, v,η) ∈ D(A (t )).

Portanto, o operador λI −A (t ) é sobrejetivo para todo t > 0. Como κ(t ) > 0, temos

λI − Ã (t ) = (λ+κ(t ))I −A (t ) é sobrejetivo ∀t > 0. (3.63)
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Para completar a prova de (iii), basta provar que

∥Φ∥t

∥Φ∥s
≤ e

c
2τ0

|t−s|
, ∀ t , s ∈ [0,T ], (3.64)

onde Φ= (z, w,u, v,η)T , c é uma constante positiva e ∥ ·∥t é a norma associada ao produto interno
(3.36). Para t , s ∈ [0,T ], temos

∥Φ∥2
t −∥Φ∥2

s e
c
τ0

|t−s| =
(
1−e

c
τ0

|t−s|)∫ L

0

[
ρz |w |2 +ρu |v |2 +

(
a1 −a2

2/a3
) |zx |2 +

∣∣∣∣ a2p
a3

zx +p
a3ux

∣∣∣∣2 ]
d x

+
(
ξ(t )τ(t )−ξ(s)τ(s)e

c
τ0

|t−s|)∫ L

0

∫ 1

0
|z(x, y)|2 d y d x.

É claro que 1−e
c
τ0

|t−s| ≤ 0. Agora vamos provar ξ(t )τ(t )−ξ(s)τ(s)e
c
τ0

|t−s| ≤ 0 para alguns c > 0. Para
fazer isso, de (3.16) e pelo Teorema do Valor Médio, temos que

τ(t ) = τ(s)+τ′(r )(t − s), (3.65)

para algum r ∈ (s, t ). Como ξ é uma função não crescente e ξ> 0, obtemos

ξ(t )τ(t ) ≤ ξ(s)τ(s)+ξ(s)τ′(r )(t − s), (3.66)

o que implica

ξ(t )τ(t )

ξ(s)τ(s)
≤ 1+ |τ′(r )|

τ(s)
|t − s|. (3.67)

Usando (3.16) e o fato que τ′ é limitado, deduzimos que

ξ(t )τ(t )

ξ(s)τ(s)
≤ 1+ c

τ0
|t − s| ≤ e

c
τ0

|t−s|
, (3.68)

o que prova (3.64) e, portanto, (iii) segue.

(iv) Observe que, de (A1), temos que

κ′(t ) = τ′(t )τ′′(t )

2τ(t )
√

1+τ′(t )2
− τ′(t )

√
1+τ′(t )2

2τ(t )2
(3.69)

é limitado em [0,T ] para todo T > 0. Além disso

d

d t
A (t )U =



0

−ρ−1
z [µ′

1(t )w +µ′
2(t )η(·,1)]

0

0
τ′′(t )τ(t )y−τ′(t )(τ′(t )y−1)

τ(t )2 ηy


. (3.70)

Como τ′′(t )τ(t )ρ−τ′(t )(τ′(t )ρ−1)
τ(t )2 é limitado em [0,T ] por (A1), e considerando (A2) e (A3), temos

d

d t
Ã (t ) ∈ L∞

∗ ([0,T ],B(D(A (0)),H )), (3.71)
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onde L∞∗ ([0,T ],B(D(A (0)),H )) é o espaço de classes de equivalência de funções essencialmente
limitadas e fortemente mensuráveis de [0,T ] para B(D(A (0)),H ).

Então, (3.46), (3.63) e (3.64) implicam que a família Ã = {Ã (t ) : t ∈ [0,T ]} é uma família estável
de geradores em H com constantes de estabilidade independentes de t , pela Proposição 1.1 de
(KATO, 2011). Portanto, as suposições (i)-(iv) do Teorema 3.1 são verificadas. Assim, o problema{

Ũt = Ã (t )Ũ ,

Ũ (0) = U0,
(3.72)

tem uma única solução Ũ ∈ C ([0,+∞),D(A (0)))∩C 1([0,+∞),H ) para U0 ∈ D(A (0)). A solução
pedida de (3.30) é então dada por

U (t ) = e
∫ t

0 κ(s)d sŨ (t ), (3.73)

pois

Ut (t ) = κ(t )e
∫ t

0 κ(s)d sŨ (t )+e
∫ t

0 κ(s)d sŨt (t )

= e
∫ t

0 κ(s)d s(κ(t )+ Ã (t ))Ũ (t )

= A (t )e
∫ t

0 κ(s)d sŨ (t )

= A (t )U (t )

(3.74)

o que conclui a prova.

3.4 Estabilidade exponencial

Esta seção é dedicada ao estudo do comportamento assintótico. Mostramos que a solução do
problema (3.24)–(3.26) é exponencialmente estável usando o método da energia.

Definimos a energia associada à soluçãoU (t ) = (z(t ), zt (t ),u(t ),ut (t ),η(t ))doproblema (3.24)–
(3.26) pelo seguinte funcional

E(t ) = 1

2

∫ L

0

[
ρz |zt |2 +ρu |ut |2 +

(
a1 −a2

2/a3
) |zx |2 +

∣∣∣∣ a2p
a3

zx +p
a3ux

∣∣∣∣2]
d x

+ ξ(t )τ(t )

2

∫ L

0

∫ 1

0
|η|2 d y d x.

(3.75)

Nosso esforço consiste em construir um funcional de Lyapunov adequado pelo método da energia.
O objetivo principal desta seção é provar o seguinte resultado de estabilidade.

Teorema 3.3
[Decaimento exponencial] Seja U (t) = (z(t), zt (t),u(t),ut (t),η(t)) a solução de (3.24)–(3.26) com
dados iniciaisU0 ∈ D(A (0)) e E (t ) a energia deU . Então existem constantes positivas M e γ tais que

E(t ) ≤ ME(0)e−γt , ∀t ≥ 0. (3.76)
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Para a prova do Teorema 3.3 precisamos de vários lemas. Nosso primeiro resultado afirma que
a energia é uma função não crescente e uniformemente limitada por E(0).

Lema 3.4
SejaU (t ) = (z(t ), zt (t ),u(t ),ut (t ),η(t )) a solução de (3.24)–(3.26). Então, a energia E(t ) satisfaz

d

d t
E(t ) ≤−µ1(t )

(
1− ξ

2
− δ

2
p

1−d

)∫ L

0
|zt |2 d x

−µ1(t )

(
ξ(1−τ′(t ))

2
− δ

p
1−d

2

)∫ L

0
|η(x,1, t )|2 d x

≤ 0.

(3.77)

Demonstração. Multiplicando (3.24)1 por zt , (3.24)2 por ut e integrando cada um deles por partes
sobre [0,L], obtemos

1

2

d

d t

∫ L

0
(ρz |zt |2 +a1|zx |2)d x +a2

∫ L

0
ux zxt d x +µ1(t )

∫ L

0
|zt |2d x +µ2(t )

∫ L

0
η(x,1, t )zt d x = 0,(3.78)

1

2

d

d t

∫ L

0

(
ρu |ut |2 +a3|ux |2

)
d x +a2

∫ L

0
zxuxt d x = 0.(3.79)

Agora, multiplicando (3.24)3 por ξ(t )η e integrando sobre [0,L]× [0,1], obtemos
τ(t )ξ(t )

2

∫ L

0

∫ 1

0

d

d t
|η|2 d y d x + ξ(t )

2

∫ L

0

∫ 1

0
(1−τ′(t )y)

∂

∂y
|η|2 d y d x = 0, (3.80)

que é equivalente a
d

d t

(
ξ(t )τ(t )

2

∫ L

0

∫ 1

0
|η|2 d y d x

)
= ξ(t )

2

∫ L

0
|zt |2 d x − ξ(t )

2

∫ L

0
|η(x,1, t )|2 d x

+ ξ(t )τ′(t )

2

∫ L

0
|η(x,1, t )|2 d x + ξ′(t )τ(t )

2

∫ L

0

∫ 1

0
|η|2 d y d x.

(3.81)

Combinando (3.78), (3.79) e (3.81), obtemos
d

d t
E(t ) =−µ1(t )

∫ L

0
|zt |2 d x −µ2(t )

∫ L

0
η(x,1, t )zt d x + ξ(t )

2

∫ L

0
|zt |2 d x − ξ(t )

2

∫ L

0
|η(x,1, t )|2 d x

+ ξ(t )τ′(t )

2

∫ L

0
|η(x,1, t )|2 d x + ξ′(t )τ(t )

2

∫ L

0

∫ 1

0
|η|2 d y d x.

(3.82)

Aplicando a desigualdade de Young e levando em conta (3.38), (A2) (que resulta em ξ′(t ) ≤ 0), temos
que

d

d t
E(t ) ≤ −

(
µ1(t )− ξ(t )

2
− |µ2(t )|

2
p

1−d

)∫ L

0
|zt |2 d x

−
(
ξ(t )

2
− ξ(t )τ′(t )

2
− |µ2(t )|p1−d

2

)∫ L

0
|η(x,1, t )|2 d x

+ ξ′(t )τ(t )

2

∫ L

0

∫ 1

0
|η|2 d y d x

≤ −µ1(t )

(
1− ξ̄

2
− δ

2
p

1−d

)∫ L

0
|zt |2 d x

−µ1(t )

(
ξ̄(1−τ′(t ))

2
− δ

p
1−d

2

)∫ L

0
|η(x,1, t )|2 d x

≤ 0.

(3.83)
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Daí a prova está completa.

No resultado anterior observamos que o funcional de energia restaura alguns termos do
funcional da energia com sinal negativo. Estamos interessados emconstruir um funcional de Lyapunov
que restaure a energia total do sistema com sinal negativo e, para isso, consideramos os seguintes
lemas.

Lema 3.5
SeU (t ) = (z(t ), zt (t ),u(t ),ut (t ),η(t )) é uma solução de (3.24)–(3.26), então o funcional I1, definido
por

I1(t ) = ρz

∫ L

0
zt z d x − a2ρu

a3

∫ L

0
ut z d x (3.84)

satisfaz a estimativa

d

d t
I1(t ) ≤− 1

2

(
a1 −a2

2/a3
)∫ L

0
|zx |2 d x +ε1

∫ L

0
|ut |2 d x

+ c1

(
1+ 1

ε1

)∫ L

0
|zt |2 d x + c1

∫ L

0
|η(x,1, t )|2 d x,

(3.85)

para quaisquer constantes ε1 > 0 e c1 > 0.

Demonstração. Derivando de I1(t ), logo depois usando (3.24) e integrando por partes, segue que

d

d t
I1(t ) ≤ − (

a1 −a2
2/a3

)∫ L

0
|zx |2 d x −µ1(t )

∫ L

0
zt z d x −µ2(t )

∫ L

0
η(x,1, t )z d x

+ρz

∫ L

0
|zt |2 d x − a2ρu

a3

∫ L

0
ut zt d x.

(3.86)

Por (A2) e (A3), obtemos que

d

d t
I1(t ) ≤ − (

a1 −a2
2/a3

)∫ L

0
|zx |2 d x +µ1(t )

∫ L

0
|zt z|d x +|µ2(t )|

∫ L

0
|η(x,1, t )z|d x

+ρz

∫ L

0
|zt |2 d x − a2ρu

a3

∫ L

0
ut zt d x

≤ − (
a1 −a2

2/a3
)∫ L

0
|zx |2 d x +µ1(0)

∫ L

0
|zt z|d x +δµ1(0)

∫ L

0
|η(x,1, t )z|d x

+ρz

∫ L

0
|zt |2 d x − a2ρu

a3

∫ L

0
ut zt d x.

(3.87)

Explorando as desigualdades de Young e Poincaré, obtemos as estimativas (3.85) e concluímos a
prova.

Lema 3.6
SeU (t ) = (

z(t ), zt (t ),u(t ),ut (t ),η(t )
)
é uma solução de (3.24) –(3.26), então o funcional I2, definido

por

I2(t ) = ρz

∫ L

0
zt z d x +ρu

∫ L

0
ut u d x (3.88)
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satisfaz a estimativa

d

d t
I2(t ) ≤ − 1

2

(
a1 −a2

2/a3
)∫ L

0
|zx |2 d x −

∫ L

0

∣∣∣∣ a2p
a3

zx +p
a3ux

∣∣∣∣2

d x

+ c2

∫ L

0
|zt |2 d x + c2

∫ L

0
|η(x,1, t )|2 d x,

(3.89)

para alguma contante c2 > 0.

Demonstração. Derivando de I2(t ), usando (3.24) e integrando por partes, chegamos a

d

d t
I2(t ) = −a1

∫ L

0
|zx |2 d x −2a2

∫ L

0
ux zx d x −a3

∫ L

0
|ux |2 d x

+ρz

∫ L

0
|zt |2 d x −µ1(t )

∫ L

0
zt z d x −µ2(t )

∫ L

0
η(x,1, t )z d x.

(3.90)

Por (A2) e (A3), juntamente com o fato de que a1 = a1 −a2
2/a3 +a2

2/a3 temos que

d

d t
I2(t ) ≤ − (

a1 −a2
2/a3

)∫ L

0
|zx |2 d x −

∫ L

0

∣∣∣∣ a2p
a3

zx +p
a3ux

∣∣∣∣2

d x

+ρz

∫ L

0
|zt |2 d x +µ1(0)

∫ L

0
|zt z|d x +δµ1(0)

∫ L

0
|η(x,1, t )z|d x.

(3.91)

A estimativa (3.89) segue graças às desigualdades de Young e Poincaré.

Lema 3.7
SeU (t ) = (z(t ), zt (t ),u(t ),ut (t ),η(t )) é uma solução de (3.24)–(3.26), então o funcional I3, definido
por

I3(t ) = a2ρz

∫ L

0
zt

(
a2p
a3

z +p
a3u

)
d x − a2

2ρu

a3

∫ L

0
ut

(
a2p
a3

z +p
a3u

)
d x (3.92)

satisfaz a estimativa

d

d t
I3(t ) ≤ − a2

2ρup
a3

∫ L

0
|ut |2 d x +ε3

∫ L

0

∣∣∣∣ a2p
a3

zx +p
a3ux

∣∣∣∣2

d x + c3

ε3

∫ L

0
|zx |2 d x

+ c3

ε3

∫ L

0
|η(x,1, t )|2 d x + c3

(
1+ 1

ε3

)∫ L

0
|zt |2 d x,

(3.93)

para quaisquer constantes ε3 > 0 e c3 > 0.
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Demonstração. Derivando o funcional I3(t ), usando (3.24) junto com integração por partes, obtemos

d

d t
I3(t ) =−a2

(
a1 −a2

2/a3
)∫ L

0
zx

(
a2p
a3

z +p
a3u

)
d x −a2µ1(t )

∫ L

0
zt

(
a2p
a3

z +p
a3u

)
d x

−a2µ2(t )
∫ L

0
η(x,1, t )

(
a2p
a3

z +p
a3u

)
d x +a2ρz

∫ L

0
zt

(
a2p
a3

zt +p
a3ut

)
d x

− a2ρu

a3

∫ L

0
ut

(
a2p
a3

zt +p
a3ut

)
d x

=−a2
(
a1 −a2

2/a3
)∫ L

0
zx

(
a2p
a3

z +p
a3u

)
d x −a2µ1(t )

∫ L

0
zt

(
a2p
a3

z +p
a3u

)
d x

−a2µ2(t )
∫ L

0
η(x,1, t )

(
a2p
a3

z +p
a3u

)
d x + a2

2ρzp
a3

∫ L

0
|zt |2 d x

+a2
p

a3ρz

∫ L

0
zt ut d x − a2

2ρu

a3
p

a3

∫ L

0
ut zt d x − a2

2ρup
a3

∫ L

0
|ut |2 d x.

(3.94)

Por (A2) e (A3), obtemos

d

d t
I3(t ) ≤−a2

(
a1 −a2

2/a3
)∫ L

0
zx

(
a2p
a3

z +p
a3u

)
d x +a2µ1(0)

∫ L

0

∣∣∣∣zt

(
a2p
a3

z +p
a3u

)∣∣∣∣ d x

+a2δµ1(0)
∫ L

0

∣∣∣∣η(x,1, t )

(
a2p
a3

z +p
a3u

)∣∣∣∣ d x + a2
2ρzp
a3

∫ L

0
|zt |2 d x

+a2
p

a3ρz

∫ L

0
zt ut d x − a2

2ρu

a3
p

a3

∫ L

0
ut zt d x − a2

2ρup
a3

∫ L

0
|ut |2 d x.

(3.95)

Em seguida, usamos as desigualdades de Young e Poincaré para obter (3.93).

Comoem (KIRANE; SAID-HOUARI; ANWAR, 2011), levando emconta o último lema, introduzimos
o funcional

J (t ) = ξτ(t )
∫ L

0

∫ 1

0
e−2τ(t )y |η|2 d y d x, ξ> 0.

Claramente

J (t ) ≥ ξ(t )τ(t )

µ1(t )
e−2τ1

∫ L

0

∫ 1

0
|η|2 d y d x > δτ0p

1−d
e−2τ1

∫ L

0

∫ 1

0
|η|2 d y d x > 0, (3.96)

sendo (3.17), (3.37), (3.38) e (A2) válidos. Para este funcional, temos o seguinte resultado:

Lema 3.8 ((KIRANE; SAID-HOUARI; ANWAR, 2011, Lemma 3.7))
SejaU (t ) = (z(t ), zt (t ),u(t ),ut (t ),η(t )) é uma solução de (3.24)–(3.26). Então o funcional J (t ) satisfaz

d

d t
J (t ) ≤−2J (t )+ξ

∫ L

0
|zt |2 d x. (3.97)

Agora estamos em condições de provar nosso resultado principal.

Prova do Teorema 3.3. Vamos construir um funcional de Lyapunov adequado L que satisfaça a
seguinte relação de equivalência

γ1E(t ) ≤L (t ) ≤ γ2E(t ), ∀t ≥ 0, (3.98)
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para algum γ1,γ2 > 0 e para provar que

d

d t
L (t ) ≤−λL (t ), ∀t ≥ 0, (3.99)

para algum λ> 0, o que implica

L (t ) ≤L (0)e−λt , ∀t ≥ 0. (3.100)

Vamos definir o funcional de Lyapunov

L (t ) = N E(t )+
3∑

i=1
Ni Ii (t )+ J (t ), (3.101)

onde Ni , i = 1,2,3 são números reais positivos que serão escolhidos posteriormente. Pelo Lema 3.4,
existe uma constante positiva K tal que

d

d t
E(t ) ≤−K

(∫ L

0
|zt |2 d x +

∫ L

0
|η(x,1, t )|2 d x

)
. (3.102)

Pela definição de L (t ), temos que

|L (t )−N E(t )| ≤
3∑

i=1
Ni |Ii (t )|+ξτ(t )|J (t )|. (3.103)

Segue de (3.75), das desigualdades de Young e Poincaré e do fato de que τ(t ) ≤ τ1 para todos t ≥ 0 e
e−2τ(t )y ≤ 1 para todo y ∈ (0,1) que

|L (t )−N E(t )| ≤ γ3E(t ), (3.104)

para alguma constante γ3 > 0. Então, podemos escolher N grande o suficiente para que γ1 := N −γ3

e γ2 := N +γ3, então

γ1E(t ) ≤L (t ) ≤ γ2E(t ), ∀t ≥ 0, (3.105)

vale.

Agora, derivando L (t), substituindo as estimativas (3.85), (3.89), (3.93), (3.97), (3.102) e
definindo ε1 := 1

N1
e ε3 := 1

N3
, obtemos que

d

d t
L (t ) ≤ −

[
N K − c1 (1+N1) N3 − c2N2 − c3 (1+N3) N3 −ξ

]∫ L

0
|zt |2 d x

−
(
N K − c1N1 − c2N2 − c3N 2

3

)∫ L

0
|η(x,1, t )|2 d x

−
[

1

2

(
a1 −a2

2/a3
)

N1 + 1

2

(
a1 −a2

2/a3
)

N2 − c3N 2
3

]∫ L

0
|zx |2 d x

−
(
N2 −1

)∫ L

0

∣∣∣∣ a2p
a3

zx +p
a3ux

∣∣∣∣2

d x −
(

a2
2ρup
a3

N3 −1

)∫ L

0
|ut |2 d x −2J (t ).

(3.106)

Primeiramente, escolhemos

N2 > 1, N3 >
p

a3

a2
2ρu

e N1 > 2c3N 2
3 /(a1 −a2

2/a3). (3.107)
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Agora, como ξ(t )τ(t ) é não negativo e limitado, e escolhendo N suficientemente grande para que
(3.106) seja levado na seguinte estimativa

d

d t
L (t ) ≤−β

∫ L

0

[
ρz |zt |2+ρu |ut |2+

(
a1 −a2

2/a3
)|zx |2+

∣∣∣∣ a2p
a3

zx +p
a3ux

∣∣∣∣2

+ξ(t )τ(t )
∫ 1

0
|η|2d y

]
d x,

para alguma constante positiva β. Portanto, de (3.75), temos

d

d t
L (t ) ≤−βE(t ), ∀ t > 0. (3.108)

Em vista de (3.105) e (3.108), notamos que

d

d t
L (t ) ≤−λL (t ), ∀ t > 0, (3.109)

para algum λ> 0, o que leva a

L (t ) ≤L (0)e−λt , ∀ t > 0. (3.110)

O resultado desejado (3.76) segue usando as estimativas (3.105) e (3.110). Então, a prova do Teorema
3.3 está completa.
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Capítulo 4

Análise de estabilidade de vigas laminadas com
amortecimento Kelvin-Voigt e atraso de tempo
forte

4.1 Introdução

Neste capítulo, estamos interessados em estudar o sistema de vigas laminadas com grande
atraso em (x, t ) ∈ (0, l )× [0,∞) dado por

ρut t +G(ψ−ux)x = 0,

Iρ(3S −ψ)t t −D(3S −ψ)xx −G(ψ−ux)−µ1(3S −ψ)xxt −µ2(3S −ψ)xxt (x, t −τ) = 0,

3IρSt t −3DSxx +3G(ψ−ux)+4δS +4γSt = 0,

(4.1)

sujeito a condições de fronteira dadas por

u(0, t ) =ψx(0, t ) = Sx(0, t ) = ux(l , t ) =ψ(l , t ) = S(l , t ) = 0 ∀t ≥ 0 (4.2)

e condições iniciais

u(x,0) = u0(x), ut (x,0) = u1(x), ψ(x,0) =ψ0(x), x ∈ (0, l ),

ψt (x,0) =ψ1(x), S(x,0) = S0(x), St (x,0) = S1(x), x ∈ (0, l ),

(3S −ψ)xxt (x, t −τ) = f0(x, t −τ), (x, t ) ∈ (0, l )× (0,τ).

(4.3)

A viga laminada é um modelo matemático dado por duas placas conectadas por uma camada
adesiva de espessura e massa desprezíveis. Um exemplo de aplicação de um adesivo para colar duas
placas (camadas) é mostrado na Figura 2.

O modelo foi derivado da teoria de Timoshenko por S. Hansen e R. Spies (HANSEN, 1994;
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Figura 2 – Aplicação de adesivo (esquerda) e chapa na prensa (direita)

HANSEN; SPIES, 1997) e é dado pelas três equações a seguir

ρωt t +G(ψ−ωx)x = 0,

Iρ(3st t −ψt t )−G(ψ−ωx)−D(3sxx −ψxx) = 0,

Iρst t +G(ψ−ωx)+ 4
3γs + 4

3βst −Dsxx = 0,

(4.4)

onde os coeficientes ρ,G , Iρ,D,γ,β são constantes positivas e representam densidade, rigidez ao
cisalhamento, momento de inércia de massa, rigidez à flexão, rigidez adesiva e parâmetro de amor-
tecimento adesivo, respectivamente. A função ω(x, t) é o deslocamento transversal, ψ(x, t) é o
deslocamento rotacional e s(x, t) é proporcional à quantidade de escorregamento ao longo da
interface. A terceira equação descreve a dinâmica do deslizamento.

Para vigas laminadas sem atraso, começamos citando a contribuição em (WANG; XU; YUNG,
2005), onde os autores consideraram (4.4) com o seguinte controle de contorno,

ω(0) =ψ(0) = s(0) = 0, ψ(1)−ωx(1) = k1ωt (1), sx(1) = 0, (3sx −ψx)(1) =−k2(3st −ψt )(1)

e obtiveram que a energia decai exponencialmente assumindo ki ̸= ri (i = 1,2), onde

r1 := G

ρ
̸= D

Iρ
:= r2.

Este resultado foi melhorado por M. Mustafa, que estabeleceu o decaimento exponencial para
r1 = r2 e estendeu esses resultados para casos de funções não lineares no controle de fronteira, veja
(MUSTAFA, 2018a). Também podemos encontrar alguns resultados de estabilidade no sistema (4.4)
com amortecimento de fronteira em (CAO; LIU; XU, 2007; RAPOSO et al., 2017b; TATAR, 2015), etc. C.
Raposo (RAPOSO, 2016) investigou em seu pioneiro trabalho, o sistema (4.4) adicionando termos de
amortecimento de atrito na transversal deslocamento e ângulo de rotação, respectivamente. Ele
estabeleceu a estabilidade exponencial do sistema sem quaisquer restrições nos coeficientes. O
resultado foi estendido para uma estrutura não linear por Feng et al. (FENG et al., 2018). O sistema
de vigas laminadas são tão interessantes, que podemos citar diversos resultados envolvendo o
sistema (4.4) com outros tipos de mecanismos de amortecimento, como por exemplo (APALARA,
2017; APALARA, 2019; CHEN; LIU; CHEN, 2019; LO; TATAR, 2015; LO; TATAR, 2016; MUSTAFA, 2018b)
para citar apenas algumas referências.

Os efeitos de atraso geralmente aparecem em muitos problemas práticos, por exemplo, fenô-
menos químicos, físicos, térmicos e econômicos, e assim por diante, e a presença de um atraso
arbitrariamente pequeno pode desestabilizar um sistema que é uniforme ou assintoticamente estável
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na ausência de atraso. Em (NICAISE; PIGNOTTI, 2006), os autores consideraram o sistema de equação
de onda

ut t −∆u = 0, x ∈Ω, t > 0,

u = 0, x ∈ Γ0, t > 0,
∂u
∂ν +µ1ut (t )+µ2ut (t −τ) = 0, x ∈ Γ1, t > 0,

e provaram que a energia decai exponencialmente sob a suposição µ2 <µ1, caso contrário, o sistema
fica instável. Resultados semelhantes podem ser encontrado em (NICAISE; PIGNOTTI, 2011; NICAISE;
PIGNOTTI; VALEIN, 2011).

Para vigas laminadas com retardo de tempo, há poucos resultados. B. Feng (FENG, 2018)
estudou o sistema (4.4) com controles na fronteira e termos internos de retardo constantes nas três
equações. Ele provou que o sistema é exponencialmente estável se os coeficientes de atraso de
tempo forem pequenos. K. Mpungu et al. (MPUNGU; APALARA; MUMINOV, 2021) consideraram o
sistema (4.4) com amortecimento por fricção e um termo de retardo interno constante agindo no
deslocamento transversal. Eles obtiveram que o sistema é exponencialmente estável supondo que as
velocidades de onda iguais se mantém, caso contrário, a energia decai polinomialmente. A. Choucha
et al. (CHOUCHA; OUCHENANE; BOULAARAS, 2020) estudaram uma viga laminada termoelástica de
Timoshenko com retardo distribuído, considerando a condução de calor dada pela lei de Cattaneo.
Eles provaram os mesmos resultados de estabilidade que em (MPUNGU; APALARA; MUMINOV,
2021).

Observe que, combinando as equações (4.4)2 e (4.4)3, obtemos

ρωt t +G(ψ−ωx)x = 0,

Iρψt t −Dψxx +4G(ψ−ωx)+4γs +4βst = 0.
(4.5)

Tomando s = 0 em (4.5), o sistema se reduz ao sistema de Timoshenko. B. Said-Houari e Y. Laskri
(SAID-HOUARI; LASKRI, 2010) investigaram um sistema Timoshenko com um retardo dado por

ρ1ϕt t −κ(ϕx +ψ)x = 0,

ρ2ψt t −bψxx +κ(ϕx +ψ)+µ1ψt +µ2ψt (t −τ) = 0,

e estabeleceram o decaimento exponencial da energia considerando como uma de suas hipóteses
que µ2 < µ1. O resultado foi estendido por M. Kirane et al. ao caso do retardo variável no tempo,
veja (KIRANE; SAID-HOUARI; ANWAR, 2011). H. Makheloufi et al. (MAKHELOUFI; BAHLIL; FENG, 2021)
estudaram um sistema de Timoshenko com um forte amortecimento e um forte retardo dado por

ρ1ϕt t −κ(ϕx +ψ)x −µ1ϕxxt −µ2ϕxxt (t −τ) = 0,

ρ2ψt t −bψxx +κ(ϕx +ψ) = 0.

Eles provaram que o sistema não é exponencialmente estável, mesmo que as velocidades de propaga-
ções sejam iguais. Porém eles conseguiram provar que o sistema decai polinomialmente com taxa de
t−1/2. Além disso, concluíram que essa taxa de decaimento é ótima. Para obter mais resultados sobre
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a estabilidade de Timoshenko com retardo de tempo, pode-se consultar (APALARA; MESSAOUDI,
2015; DJILALI; BENAISSA, 2015; GUESMIA, 2014; KAFINI et al., 2015), etc.

Motivados pelas referências citadas acima, consideramos neste capítulo, o sistema de vigas
laminadas com grande retado, ou seja, µ2(3S −ψ)xxt (x, t −τ). Nosso objetivo é estudar a solu-
ção global e os resultados de estabilidade para o sistema, levando em consideração o número de
estabilidade

χ := G

ρ
− D

Iρ
.

Utilizando as técnicas de semigrupo de operadores lineares, provamos a solução global do sistema,
veja a Seção 4.2. Na Seção 4.3, usando o Teorema de Gearhart-Herbst-Prüss-Huang, provamos que
o sistema (4.1)–(4.3) não é exponencialmente estável se χ ̸= 0. Por fim, a Seção 4.4 é dedicada ao
decaimento de energia do sistema, onde provamos que a energia decai exponencialmente no caso
que as velocidades de propagação de ondas sejam iguais, ou seja, χ= 0. Caso contrário, se χ ̸= 0, o
sistema vai para zero polinomialmente com taxa t−1/2.

4.2 Solução global

Introduzimos uma nova variável dependente z para lidar com o termo de feedback de atraso,
i.e.,

z(x,η, t ) = (3S −ψ)t (x, t −ητ) em (0, l )× (0,1)× (0,∞). (4.2.1)

Verifica-se facilmente que o z satisfaz

τzt (x,η, t )+ zη(x,η, t ) = 0 em (0, l )× (0,1)× (0,∞). (4.2.2)

Seguindo a ideia de (WANG; XU; YUNG, 2005), denotamos a rotação efetiva do ângulo por ξ := 3S−ψ.
Por (4.2.2), o sistema (4.1) pode ser reescrito da seguinte forma:

ρut t +G(3S −ξ−ux)x = 0 em (0, l )× (0,∞),

Iρξt t −Dξxx −G(3S −ξ−ux)−µ1ξxxt −µ2zxx(x,1, t ) = 0 em (0, l )× (0,∞),

3IρSt t −3DSxx +3G(3S −ξ−ux)+4δS +4γSt = 0 em (0, l )× (0,∞),

τzt (x,η, t )+ zη(x,η, t ) = 0 em (0, l )× (0,1)× (0,∞),

(4.2.3)

sujeito às condições de fronteira fornecidas em (4.2), ou seja,

u(0, t ) = ξx(0, t ) = Sx(0, t ) = ux(l , t ) = ξ(l , t ) = S(l , t ) = 0 em (0,∞) (4.2.4)

e condições iniciais

u(x,0) = u0, ut (x,0) = u1, ξ(x,0) = ξ0, x ∈ (0, l ),

ξt (x,0) = ξ1, S(x,0) = S0, St (x,0) = S1, x ∈ (0, l ),

z(x,η,0) = f0(x,−ητ) = ξ2(x,η), (x,η) ∈ (0, l )× (0,1).

(4.2.5)
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A seguir, usando a teoria de semigrupo encontrada em (PAZY, 1983), obteremos o resultado de
existência, unicidade e regularidade para o problema (4.2.3)–(4.2.5).

Agora, consideremos os seguintes espaços

H 1
a(0, l ) = {

ϕ :ϕ ∈ H 1(0, l ),ϕ(0) = 0
}
, H 1

b (0, l ) = {
ϕ :ϕ ∈ H 1(0, l ),ϕ(l ) = 0

}
(4.2.6)

e o espaço de Hilbert

H = H 1
a(0, l )×L2(0, l )×H 1

b (0, l )×L2(0, l )×H 1
b (0, l )×L2(0, l )×H 1

b ((0, l ); L2(0,1)), (4.2.7)

munido com o seguinte produto interno

〈U ,U∗〉H = ρ

∫ l

0
w w∗ d x +G

∫ l

0
(3S −ξ−ux)(3S∗−ξ∗−u∗

x )d x + Iρ

∫ l

0
v v∗ d x +D

∫ l

0
ξxξ

∗
x d x

+3Iρ

∫ l

0
y y∗ d x +3D

∫ l

0
SxS∗

x d x +4δ
∫ l

0
SS∗ d x +ζ

∫ l

0

∫ 1

0
zx z∗

x dηd x,

(4.2.8)

para qualquer U = (u, w,ξ, v,S, y, z), U∗ = (u∗, w∗,ξ∗, v∗,S∗, y∗, z∗) em H , onde w = ut , v = ξt e
y = St . A norma induzida pelo produto interno é

∥U∥H = ρ∥w∥2 +G∥3S −ξ−ux∥2 + Iρ∥v∥2 +D∥ξx∥2 +3Iρ∥y∥2

+3D∥Sx∥2 +4δ∥S∥2 +ζ
∫ 1

0
∥zx∥2 dη,

(4.2.9)

onde ζ é uma constante positiva satisfazendo

τ|µ2| ≤ ζ≤ τ
(
2µ1 −|µ2|

)
, (4.2.10)

IntroduzindoU (t ) = (
u(t ), w(t ),ξ(t ), v(t ),S(t ), y(t ), z(t )

)⊤ eU0 =
(
u0,u1,ξ0,ξ1,S0,S1,ξ2

)⊤, o
sistema (4.2.3)–(4.2.5) pode ser escrito como o seguinte problema abstrato de valor inicial em H{

Ut (t ) = AU (t ), t > 0,

U (0) = U0,
(4.2.11)

onde o operador A : D(A ) ⊂H →H é dado por

A



u

w

ξ

v

S

y

z


=



w

−Gρ−1(3S −ξ−ux)x

v

I−1
ρ

(
Dξxx +G(3S −ξ−ux)+µ1vxx +µ2zxx(·,1)

)
y

I−1
ρ

(
DSxx −G(3S −ξ−ux)− 4

3δS − 4
3γy

)
−τ−1zη


, (4.2.12)

com

D(A )=

U := (u, w,ξ, v,S, y, z)⊤ ∈H

u, S, Dξ+µ1v +µ2z(·,1) ∈ H 2(0, l ), w ∈ H 1
a(0, l ),

v, y ∈ H 1
b (0, l ), z ∈ H 1

b

(
(0, l ); H 1(0,1)

)
,

ux (l ) = ξx (0) = Sx (0) = zx (0, ·) = 0.

 . (4.2.13)
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Note que D(A ) é denso em H e facilmente se mostra a dissipatividade do operador A assu-
mindo que |µ2| <µ1 (para mais detalhes, veja o Teorema 4.4.2), e para cadaU = (u, w,ξ, v,S, y, z)⊤

em D(A ), temos que

Re〈AU ,U 〉H ≤−K
(∥vx∥2 +∥y∥2 +∥zx(x,1)∥2), (4.2.14)

onde K := min
{
µ1 − |µ2|

2 − ζ
2τ , ζ

2τ −
|µ2|

2 ,4γ
}
> 0 desde que (4.2.10) se mantenha.

O próximo resultado é o teorema principal dessa seção, que nos garante a existência e unicidade
do problema (4.2.11).

Teorema 4.1 (Solução global)
Suponha que |µ2| < µ1, então para qualquer U0 ∈H , existe uma única solução U ∈C ([0,∞), H )

do problema (4.2.11). Além disso, seU0 ∈D(A ), então

U ∈C
(
[0,∞), D(A )

)∩C 1([0,∞), H
)
. (4.2.15)

Demonstração. ComoooperadorA é dissipativo. Agora, provaremos que o operadorλI−A é sobre-
jetivo para qualquerλ> 0. Para isso, sejaF = ( f1, f2, . . . , f7)⊤ ∈H , buscamosU = (u, w,ξ, v,S, y, z)⊤ ∈
D(A ) que é solução de (λI −A )U = F , isto é, as entradas deU satisfazem o sistema de equações

λu −w = f1, (4.2.16)

λρw +G(3S −ξ−ux)x = ρ f2, (4.2.17)

λξ− v = f3, (4.2.18)

λIρv −Dξxx −G(3S −ξ−ux)−µ1vxx −µ2zxx(x,1) = Iρ f4, (4.2.19)

λS − y = f5, (4.2.20)

3λIρy −3DSxx +3G(3S −ξ−ux)+4δS +4γy = 3Iρ f6, (4.2.21)

λτz + zη = τ f7. (4.2.22)

Suponha que encontramos u, ξ e S com a regularidade apropriada. Portanto, de (4.2.16), (4.2.18) e
(4.2.20), temos que

w = λu − f1, (4.2.23)

v = λξ− f3, (4.2.24)

y = λS − f5. (4.2.25)

É claro que w ∈ H 1
a(0, l ) e v, y ∈ H 1

b (0, l ). Além disso,

z(x,η) = v(x)e−λτη+τe−λτη
∫ η

0
f7(x,σ)eλτσdσ (4.2.26)

é solução de (4.2.22) satisfazendo

z(x,0) = v(x). (4.2.27)
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Levando em conta (4.2.24), temos que

z(x,1) = ve−λτ+τe−λτ
∫ 1

0
f7(x,σ)eλτσdσ

= (λξ− f3)e−λτ+τe−λτ
∫ 1

0
f7(x,σ)eλτσdσ

= λξe−λτ− f3e−λτ+τe−λτ
∫ 1

0
f7(x,σ)eλτσdσ.

(4.2.28)

Substituindo (4.2.23) em (4.2.17), (4.2.24) e (4.2.28) em (4.2.19) e (4.2.25) em (4.2.21), obtemos

λ2ρu +G(3S −ξ−ux)x = g1,

λ2Iρξ−αξxx −G(3S −ξ−ux) = g2 +hxx ,

ςS −3DSxx +3G(3S −ξ−ux) = g3,

(4.2.29)

onde

α := D +λµ1 +λµ2e−λτ, ς := 3λ2Iρ+4δ+4λγ,

g1 := ρ f2 +λρ f1, g2 := Iρ f4 +λIρ f3, g3 := 3Iρ f6 +3λIρ f5 +4γ f5,

hxx := −
(
µ1 +µ2e−λτ

)
f3,xx +µ2τe−λτ

∫ 1

0
f7,xx(x,σ)eλτσdσ.

(4.2.30)

Para resolver (4.2.29), usamos um procedimento padrão, considerando a forma sesquilinear

B : H 1
a(0, l )×H 1

b (0, l )×H 1
b (0, l ) →C, (4.2.31)

dada por

B
(
(u,ξ,S), (u∗,ξ∗,S∗)

)
:= λ2ρ

∫ l

0
uu∗d x +G

∫ l

0
(3S −ξ−ux)(3S∗−ξ∗−u∗

x )d x

+λ2Iρ

∫ l

0
ξξ∗ d x +α

∫ l

0
ξxξ

∗
x d x +3D

∫ l

0
SxS∗

x d x +ς
∫ l

0
SS∗ d x,

(4.2.32)

para cada (u,ξ,S), (u∗,ξ∗,S∗) ∈H := H 1
a(0, l )×H 1

b (0, l )×H 1
b (0, l ) seguido pelo funcional linear contí-

nuo

F (u∗,ξ∗,S∗) :=
∫ l

0
g1u∗d x +

∫ l

0
g2ξ∗d x −

∫ l

0
hxξ

∗
x d x +

∫ l

0
g3S∗d x, (4.2.33)

para cada (u∗,ξ∗,S∗) ∈H := H 1
a(0, l )×H 1

b (0, l )×H 1
b (0, l ).

Não é difícil mostrar queB é contínua. Para provar queB é coercivo, observemos que, aplicando
as desigualdades de Hölder, Poincaré e Young, obtemos

Re
{
B

(
(u,ξ,S), (u,ξ,S)

)}
:= λ2ρ

∫ l

0
|u|2d x +G

∫ l

0
|3S −ξ−ux |2 d x +λ2Iρ

∫ l

0
|ξ|2d x

+α
∫ l

0
|ξx |2d x +3D

∫ l

0
|Sx |2d x +ς

∫ l

0
|S|2d x

≥ C∥(u,ξ,S)∥2
H.

(4.2.34)

Assim, aplicando o Teorema de Lax-Milgram, obtemos uma solução para (u,ξ,S) ∈H para (4.2.29).
Além disso, segue de (4.2.17), (4.2.19) e (4.2.21) que u, S, Dξ+µ1v +µ2z(·,1) ∈ H 2(0, l ) e assim
(u, w,ξ, v,S, y, z) ∈ D(A ). Conseqüentemente, o resultado do Teorema 4.1 segue do Teorema de
Lumer-Phillips.
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4.3 Falta de estabilidade exponencial

Nesta seção, usaremos o Teorema de Gearhart-Herbst-Prüss-Huang 4.2, ((GEARHART, 1978;
HUANG, 1985; PRüSS, 1984)), para provarmos que o sistema (4.2.3)–(4.2.5) não é exponencialmente
estável, caso χ ̸= 0.

Teorema 4.2
Seja T (t) = eA t um C0-semigrupo de contrações em um espaço de Hilbert H , gerado por um
operador linear A : D(A ) ⊂H →H . Então T (t ) é exponencialmente estável se, e somente se,

ϱ(A ) ⊃ {iλ;λ ∈R} ≡ iR e limsup
|λ|→∞

∥(iλI −A )−1∥L (H ) <∞, (4.3.1)

onde ϱ(A ) é o conjunto resolvente do operador linear A .

O resultado principal desta seção é dado pelo seguinte teorema:

Teorema 4.3
Suponha que χ ̸= 0, então o semigrupo associado ao sistema (4.2.3)–(4.2.5) não é exponencialmente
estável.

Demonstração. Para provar este resultado, vamos argumentar por contradição, ou seja, mostrare-
mos que existe um sequência (λn)n∈N ⊂R com |λn |→∞ e (Un)n∈N ⊂ D(A ) para (Fn)n∈N ⊂H , tais
que

(
iλn I −A

)
Un = Fn , (4.3.2)

onde (Fn) é limitado em H , mas ∥Un∥H tende ao infinito. Reescrevendo a equação resolvente
(4.3.2) em termos de seus componentes, com

Un = (
un , wn ,ξn , vn ,Sn , yn , zn

)⊤ e Fn = (
0,−ρ−1 sin(βn x),0,0,0,0,0

)⊤,

onde βn := (2n +1)π/2L, temos que

iλnun −wn = 0, (4.3.3)

iλnρwn +G(3Sn −ξn −un,x)x = −sin(βn x), (4.3.4)

iλnξn − vn = 0, (4.3.5)

iλn Iρvn −Dξn,xx −G(3Sn −ξn −wn,x)−µ1vn,xx −µ2zn,xx(·,1) = 0, (4.3.6)

iλnSn − yn = 0, (4.3.7)

iλn3Iρyn −3DSn,xx +3G(3Sn −ξn −un,x)+4δSn +4γyn = 0, (4.3.8)

iλnτzn + zn,η = 0. (4.3.9)
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De (4.3.3), (4.3.5) e (4.3.7), obtemos wn = iλnun , vn = iλnξn e yn = iλnSn . Então podemos escrever

−λ2
nρun +G(3Sn −ξn −un,x)x = −sin(βn x),(4.3.10)

−λ2
n Iρξn −Dξn,xx −G(3Sn −ξn −un,x)− iλnµ1ξn,xx −µ2zn,xx(x,1) = 0, (4.3.11)

−λ2
n3IρSn −3DSn,xx +3G(3Sn −ξn −un,x)+4δSn +4iλnγSn = 0, (4.3.12)

iλnτzn + zn,η = 0. (4.3.13)

Devido às condições de fronteira (4.2.4), as funções dadas por

un(x) =An sin(βn x), ξn(x) = Bn cos(βn x),

Sn(x) = Cn cos(βn x), zn(x,η,τ) =ϕn(η,τ)cos(βn x),

são soluções do sistema (4.3.10)–(4.3.13) se, somente se An ,Bn , Cn e ϕn(η,τ) satisfazem(
λ2

nρ−β2
nG

)
An −βnGBn +3βnGCn = 1, (4.3.14)

βnGAn −
(
λ2

n Iρ−β2
nD −G − iλnµ1β

2
n

)
Bn −3GCn +µ2β

2
nϕn(1,τ) = 0, (4.3.15)

3βnGAn +3GBn +
(
λ2

n3Iρ−3β2
nD −9G −4δ−4iλnγ

)
Cn = 0, (4.3.16)

∂

∂η
ϕn(η,τ)+ iλnϕn(η,τ) = 0. (4.3.17)

De (4.3.5) e z temos ϕn(0,τ) = iλnBn e resolvendo (4.3.17), obtemos

ϕn(η,τ) = iλne−iλnτηBn . (4.3.18)

Portanto, o sistema (4.3.14)–(4.3.17) é equivalente a(
λ2

nρ−β2
nG

)
An −βnGBn +3βnGCn = 1, (4.3.19)

βnGAn −
(
λ2

n Iρ−β2
nD −G − iλnµ1β

2
n − iλnµ2β

2
ne−iλnτ

)
Bn −3GCn = 0, (4.3.20)

3βnGAn +3GBn +
(
λ2

n3Iρ−3β2
nD −9G −4δ−4iλnγ

)
Cn = 0. (4.3.21)

Escolhemos a sequência de números reais

λn :=
√

G

ρ

(
1+β2

n
)
, para todo n ∈N,

que nos fornece λ2
nρ−β2

nG =G . Logo,

GAn −βnGBn +3βnGCn = 1, (4.3.22)

βnGAn −ΦnBn −3GCn = 0, (4.3.23)

3βnGAn +3GBn +ΨnCn = 0, (4.3.24)

onde

Φn := Iρ
(
Λ+χβ2

n − i
µ1

Iρ
λnβ

2
n − i

µ2

Iρ
λne−iτλn

)
, (4.3.25)

Ψn := 3Iρ
(
Υ+χβ2

n − 4δ

3Iρ
− i

4γ

3Iρ
λn

)
, (4.3.26)
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com

Λ := G

ρ
− G

Iρ
e Υ := G

ρ
− 3G

Iρ
.

Resolvendo as equações (4.3.23)–(4.3.24), temos que

An = 9G2 −ΨnΦn

3βnG2 +3βnGΦn
Cn ∼− Iρχβn

G
Cn (4.3.27)

e

Bn =− Ψn +9G

3G +3Φn
Cn ∼− Iρχ

i
(
µ1 +µ2e−iτλn

)
λn

Cn . (4.3.28)

Substituindo as equações (4.3.27) e (4.3.28) em (4.3.22), obtemos

Cn ∼− i
(
µ1 +µ2e−iτλn

)
λn

iχ
(
µ1 +µ2e−iτλn

)
λn −3iβnGi

(
µ1 +µ2e−iτλn

)
λn +Gβn Iρχ

∼ 1(
Iρχ−3G

)
βn

. (4.3.29)

Agora, substituindo (4.3.29) em (4.3.27) e (4.3.28), obtemos

An ∼ Iρχ

G
(
Iρχ−3G

) (4.3.30)

e

Bn ∼ Iρχ

i
(
Iρχ−3G

)(
µ1 +µ2e−iτλn

)
λnβn

. (4.3.31)

Finalmente, temos que

∥Un∥2
H ≥ ρ∥wn∥2 =λ2

nρ∥un∥2 =λ2
nρ|An |2

∫ L

0
|sin(βn x)|2d x ∼O (n2). (4.3.32)

Então, como n →∞, segue que

lim
n→∞∥Un∥2

H ≥ ρ lim
n→∞∥wn∥2 =∞. (4.3.33)

Aplicando o Teorema 4.2, concluímos que o semigrupo T (t ) associado ao sistema (4.2.3)–(4.2.5) não
tem decaimento exponencial quando χ ̸= 0.

4.4 Comportamento assintótico

Esta seção é dedicada ao estudo do comportamento assintótico. Mostraremos que, sob as
hipóteses |µ2| <µ1 eχ= 0, a solução do problema (4.2.3)–(4.2.5) é exponencialmente estável usando
o método da energia. Caso contrário, a energia decai polinomialmente.
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4.4.1 Dissipação da energia

Definimos a energia associada à solução U (t) = (u(t),ut (t),ξ(t),ξt (t),S(t),St (t), z(t))⊤ do
problema (4.2.3)–(4.2.5) pela seguinte fórmula

E(t ) = 1

2

∫ l

0

(
ρu2

t + Iρξ
2
t +3IρS2

t +Dξ2
x +3DS2

x +4δS2 +G(3S −ψ−ux)2
)

d x

+ ζ

2

∫ l

0

∫ 1

0
z2

x dηd x.

(4.4.1)

O próximo resultado afirma que a energia é uma função não crescente.

Teorema 4.4
SejaU (t ) = (u(t ),ut (t ),ξ(t ),ξt (t ),S(t ),St (t ), z(t ))⊤ uma solução de (4.2.3)–(4.2.5). Para |µ2| <µ1, a
energia do sistema satisfaz a lei de dissipação, dada por

d

d t
E(t ) ≤−K

(∫ l

0
S2

t d x +
∫ l

0
ξ2

xt d x +
∫ l

0
z2

x(x,1)d x

)
, para todo t ≥ 0, (4.4.2)

onde K := min
{
µ1 − |µ2|

2 − ζ
2τ , ζ

2τ −
|µ2|

2 ,4γ
}
> 0.

Demonstração. Multiplicando (4.2.3)1 por ut , (4.2.3)2 por ξt , (4.2.3)3 por St e integrando cada um
deles por partes sobre [0, l ], obtemos

1

2

d

d t

∫ l

0
ρu2

t d x −G
∫ l

0
(3S −ψ−ux)uxt d x = 0, (4.4.3)

1

2

d

d t

∫ l

0

(
Iρξ

2
t +Dξ2

x

)
d x −G

∫ l

0
(3S −ψ−ux)ξt d x +µ1

∫ l

0
ξ2

xt d x +µ2

∫ l

0
ξxt zx(x,1)d x = 0, (4.4.4)

1

2

d

d t

∫ l

0

(
3IρS2

t +3DS2
x +4δS2) d x +3G

∫ l

0
(3S −ψ−ux)St d x +4γ

∫ l

0
S2

t d x = 0. (4.4.5)

Agora, derivando (4.2.3)4 em relação a x, multiplicando o resultado por ζ
τ

zx e integrando sobre
[0, l ]× [0,1], obtemos

ζ

2

d

d t

∫ l

0

∫ 1

0
z2

x dηd x =− ζ

2τ

∫ l

0
z2

x(x,1)d x + ζ

2τ

∫ l

0
ξ2

xt d x. (4.4.6)

Combinando (4.4.3), (4.4.4), (4.4.5) e (4.4.6), obtemos

d

d t
E(t ) =−µ1

∫ l

0
ξ2

xt d x −µ2

∫ l

0
ξxt zx(x,1)d x −4γ

∫ l

0
S2

t d x

− ζ

2τ

∫ l

0
z2

x(x,1)d x + ζ

2τ

∫ l

0
ξ2

xt d x.

(4.4.7)

Aplicando a desigualdade de Young e levando em conta (4.2.10) concluímos a demonstração.

4.4.2 Lemas técnicos

Na seção anterior, observamos que o funcional de energia restaura alguns termos de energia
com sinal negativo. Estamos interessados em construir um funcional de Lyapunov que restaure a
energia total do sistema com sinal negativo e, para isso, consideramos os seguintes lemas.
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Lema 4.5
SeU (t ) = (u(t ),ut (t ),ξ(t ),ξt (t ),S(t ),St (t ), z(t ))⊤ é uma solução de (4.2.3)–(4.2.5), então o funcional
I1, definido por

I1(t ) := Iρ

∫ l

0
ξξt d x (4.4.8)

satisfaz a estimativa

d

d t
I1(t ) ≤−D

2

∫ l

0
ξ2

x d x + c1

∫ l

0
ξ2

xt d x + c1

∫ l

0
(3S −ξ−ux)2 d x + c1

∫ l

0
z2

x(x,1)d x, (4.4.9)

para alguma constante c1 := max
{

Iρcp + 3µ2
1

2D ,
3cpG2

2D ,
3µ2

2
2D

}
> 0, onde cp é a constante de Poincaré.

Demonstração. Derivando I1(t ), usando (4.2.3) e integrando por partes, chegamos a

d

d t
I1(t ) = Iρ

∫ l

0
ξ2

t d x −D
∫ l

0
ξ2

x d x +G
∫ l

0
ξ(3S −ξ−ux)d x

−µ1

∫ l

0
ξxξxt d x −µ2

∫ l

0
ξx zx(x,1)d x.

(4.4.10)

Segue das desigualdades de Young e Poincaré que

G
∫ l

0
ξ(3S −ξ−ux)d x ≤ D

6cp

∫ l

0
ξ2 d x + 3cpG2

2D

∫ l

0
(3S −ξ−ux)2 d x

≤ D

6

∫ l

0
ξ2

x d x + 3cpG2

2D

∫ l

0
(3S −ξ−ux)2 d x,

(4.4.11)

−µ1

∫ l

0
ξxξxt d x ≤ D

6

∫ l

0
ξ2

x d x + 3µ2
1

2D

∫ l

0
ξ2

xt d x, (4.4.12)

−µ2

∫ l

0
ξx zx(x,1)d x ≤ D

6

∫ l

0
ξ2

x d x + 3µ2
2

2D

∫ l

0
z2

x(x,1)d x. (4.4.13)

Consequentemente, de (4.4.10)–(4.4.13), obtemos (4.4.9).

Lema 4.6
Suponha que χ = 0. Se U (t) = (u(t),ut (t),ξ(t),ξt (t),S(t),St (t), z(t))⊤ é uma solução de (4.2.3)–
(4.2.5), então o funcional I2, definido por

I2(t ) :=−3ρD
∫ l

0
ut Sx d x +3IρG

∫ l

0
(3S −ξ−ux)St d x (4.4.14)

satisfaz a estimativa

d

d t
I2(t ) ≤−G2

∫ l

0
(3S −ξ−ux)2 d x + c2

∫ l

0
ξ2

xt d x + c2

∫ l

0
S2

x d x + c2

∫ l

0
S2

t d x, (4.4.15)

para alguma constante c2 := max
{

3IρG
2 ,

21IρG
2 +4γ2,4δ2cpG ,

}
> 0, onde cp é a constante de Poincaré.
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Demonstração. Derivando o funcional I2(t ), usando (4.2.3), integrando por partes e pelo fato que
ψt =−(3S −ψ)t +3St , obtemos

d

d t
I2(t ) =−3G2

∫ l

0
(3S −ξ−ux)2 d x −3IρG

∫ l

0
Stξt d x +9IρG

∫ l

0
S2

t d x

−4δG
∫ l

0
(3S −ξ−ux)Sd x −4γG

∫ l

0
(3S −ξ−ux)St d x −3(IρG −ρD)

∫ l

0
uxt St d x︸ ︷︷ ︸

J :=

.
(4.4.16)

Como χ= 0, o termo J é na verdade igual a zero. Explorando as desigualdades de Young e Poincaré,
estimamos os termos não quadrados de (4.4.16) como segue

−3IρG
∫ l

0
Stξt d x ≤ 3IρG

2

∫ l

0
ξ2

t d x + 3IρG

2

∫ l

0
S2

t d x, (4.4.17)

−4δG
∫ l

0
(3S −ξ−ux)S d x ≤G

∫ l

0
(3S −ξ−ux)2 d x +4δ2G

∫ l

0
S2 d x

≤G
∫ l

0
(3S −ξ−ux)2 d x +4δ2cpG

∫ l

0
S2

x d x,

(4.4.18)

−4γG
∫ l

0
(3S −ξ−ux)St d x ≤G

∫ l

0
(3S −ξ−ux)2 d x +4γ2G

∫ l

0
S2

t d x. (4.4.19)

Substituindo as três estimativas acima em (4.4.16) completamos a prova.

Lema 4.7
SeU (t ) = (u(t ),ut (t ),ξ(t ),ξt (t ),S(t ),St (t ), z(t ))⊤ é uma solução de (4.2.3)–(4.2.5), então o funcional
I3, definido por

I3(t ) := 3Iρ

∫ l

0
St S d x +3ρ

∫ l

0
ut

∫ x

0
S(r )dr d x (4.4.20)

satisfaz a estimativa

d

d t
I3(t ) ≤−3D

∫ l

0
S2

x d x −3δ
∫ l

0
S2 d x +ε3

∫ l

0
u2

t d x + c3

(
1+ 1

ε3

)∫ l

0
S2

t d x, (4.4.21)

para qualquer ε3 > 0 e algum c3 := max
{

3Iρ, 4γ2

δ , 9lρ2

4

}
.

Demonstração. Derivando I3(t ), usando (4.2.3) e integrando por partes, obtemos

d

d t
I3(t ) =−3D

∫ l

0
S2

x d x −4δ
∫ l

0
S2 d x −4γ

∫ l

0
St S d x

+3Iρ

∫ l

0
S2

t d x +3ρ
∫ l

0
ut

∫ x

0
St (r )dr d x.

(4.4.22)

Usando as desigualdades de Young e de Cauchy-Schwarz, estimamos que

−4γ
∫ l

0
St S d x ≤ δ

∫ l

0
S2 d x + 4γ2

δ

∫ l

0
S2

t d x, (4.4.23)
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3ρ
∫ l

0
ut

∫ x

0
St (r )dr d x ≤ ε3

∫ l

0
u2

t d x + 9ρ2

4ε3

∫ l

0

(∫ x

0
St (r )dr

)2

d x

≤ ε3

∫ l

0
u2

t d x + 9lρ2

4ε3

∫ l

0
S2

t d x.

(4.4.24)

A estimativa (4.4.21) segue de (4.4.22)–(4.4.24).

Lema 4.8
SeU (t ) = (u(t ),ut (t ),ξ(t ),ξt (t ),S(t ),St (t ), z(t ))⊤ é uma solução de (4.2.3)–(4.2.5), então o funcional
I4, definido por

I4(t ) :=−ρ
∫ l

0
ut u d x (4.4.25)

satisfaz a estimativa
d

d t
I4(t ) ≤−ρ

∫ l

0
u2

t d x +ε4

∫ l

0
ξ2

x d x + c4

∫ l

0
S2

x d x + c4

(
1+ 1

ε4

)∫ l

0
(3S −ξ−ux)2 d x, (4.4.26)

para qualquer ε4 > 0 e algum c4 := max
{

5G
2 ,

G2cp

4

}
> 0, onde cp é a constante de Poincaré.

Demonstração. Derivando de I4(t), usando (4.2.3), integrando por partes e pelo fato que ux =
−(3S −ξ−ux)−ξ+3S, obtemos

d

d t
I4(t ) =−ρ

∫ l

0
u2

t d x +G
∫ l

0
(3S −ξ−ux)2 d x

+G
∫ l

0
(3S −ξ−ux)ξd x −3G

∫ l

0
(3S −ξ−ux)S d x.

(4.4.27)

Usando as desigualdades de Young e Poincaré, o terceiro e quarto termos em (4.4.27) podem ser
estimados como segue

G
∫ l

0
(3S −ξ−ux)ξd x ≤ G2cp

4ε4

∫ l

0
(3S −ξ−ux)2 d x + ε4

cp

∫ l

0
ξ2 d x

≤ G2cp

4ε4

∫ l

0
(3S −ξ−ux)2 d x +ε4

∫ l

0
ξ2

x d x,

(4.4.28)

−3G
∫ l

0
(3S −ξ−ux)S d x ≤ 3G

2

∫ l

0
(3S −ξ−ux)2 d x + 3G

2

∫ l

0
S2 d x

≤ 3G

2

∫ l

0
(3S −ξ−ux)2 d x + 3Gcp

2

∫ l

0
S2

x d x.

(4.4.29)

A afirmação do lema segue substituindo as duas estimativas acima em (4.4.27).

Lema 4.9
SeU (t ) = (u(t ),ut (t ),ξ(t ),ξt (t ),S(t ),St (t ), z(t ))⊤ é uma solução de (4.2.3)–(4.2.5), então o funcional
I5, definido por

I5(t ) :=
∫ l

0

∫ 1

0
e−2τηz2

x(x,η)dηd x (4.4.30)

satisfaz a estimativa
d

d t
I5(t ) ≤−e−2τ

∫ l

0

∫ 1

0
z2

x(x,η)dηd x − e−2τ

2τ

∫ l

0
z2

x(x,1)d x + 1

2τ

∫ l

0
ξ2

xt d x. (4.4.31)
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Demonstração. Diferenciando I5(t ) e usando (4.2.3), temos que

d

d t
I5(t ) =−1

τ

∫ l

0

∫ 1

0
e−2τηzx(x,η)zxη(x,η)dηd x

=−
∫ l

0

∫ 1

0
e−2τηz2

x(x,η)dηd x − 1

2τ

∫ l

0

∫ 1

0

∂

∂η

(
e−2τηz2

x(x,η)
)

dηd x

=−
∫ l

0

∫ 1

0
e−2τηz2

x(x,η)dηd x − 1

2τ

∫ l

0

(
e−2τz2

x(x,1)−ξ2
xt

)
d x.

(4.4.32)

Em seguida, explorando a desigualdade e−2τ ≤ e−2τη ≤ 1 para qualquer η ∈ (0,1), chegamos na
estimativa (4.4.31).

4.4.3 Estabilidade exponencial

Estamos agora em condições de provar nosso principal resultado, que é enunciado no seguinte
teorema:

Teorema 4.10 (Decaimento exponencial)
Seja U (t) = (u(t),ut (t),ξ(t),ξt (t),S(t),St (t), z(t))⊤ a solução de (4.2.3)–(4.2.5) com dados iniciais
U0 ∈ D(A ) e E(t) a energia de U . Suponhamos que |µ2| < µ1 e χ = 0, então existem constantes
positivas M e σ tais que

E(t ) ≤ ME(0)e−σt , para todo t ≥ 0. (4.4.33)

Demonstração. Construiremos um funcional de Lyapunov adequado L que satisfaça a seguinte
relação de equivalência

κ1E(t ) ≤L (t ) ≤ κ2E(t ), para todo t ≥ 0, (4.4.34)

para algum κ1, κ2 > 0 e provaremos que

d

d t
L (t ) ≤−λL (t ), para todo t ≥ 0, (4.4.35)

para algum λ> 0, o que implica

L (t ) ≤L (0)e−λt , para todo t ≥ 0. (4.4.36)

Definimos o funcional de Lyapunov dado por

L (t ) := N E(t )+
5∑

i=1
Ni Ii (t ), (4.4.37)
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onde Ni , i = 1,2,3,4,5 são números reais positivos que serão escolhidos posteriormente. Pela
definição de L (t ), temos que

|L (t )−N E(t )| ≤ N1

(
Iρ

∫ l

0
|ξξt |d x

)
+N2

(
3ρD

∫ l

0
|ut Sx |d x +3IρG

∫ l

0
|(3S −ξ−ux)St |d x

)
+N3

(
3Iρ

∫ l

0
|St S|d x +3ρ

∫ l

0

∣∣∣∣ut

∫ x

0
S(r )dr

∣∣∣∣ d x

)
+N4ρ

∫ l

0
|ut u|d x +N5

∫ l

0

∫ 1

0

∣∣e−2τηz2
x(x,η)

∣∣ dηd x.

(4.4.38)

Segue de (4.4.1), das desigualdades de Young, Poincaré e Cauchy-Schwarz e do fato de que e−2τ ≤
e−2τη ≤ 1 para qualquer η ∈ (0,1) que

|L (t )−N E(t )| ≤ σ1

∫ l

0

[
u2

t +ξ2
t +S2

t +ξ2
x +S2

x +S2 + (3S −ξ−ux)2 +
∫ 1

0
z2

x dη

]
d x

≤ σ2E(t ),

para alguma constante σ2 > 0. Então, podemos escolher N suficientemente grande para que
κ1 := N −σ2 e κ2 := N +σ2, então obtemos que

κ1E(t ) ≤L (t ) ≤ κ2E(t ), para todo t ≥ 0. (4.4.39)

Agora, tomando a derivada de L (t), substituindo as estimativas (4.4.2), (4.4.9), (4.4.15),
(4.4.21), (4.4.26), (4.4.31) e tomando

N1 = N4 = N5 = 1, ε3 = ρ

2N3
e ε4 = D

4
, (4.4.40)

obtemos

d

d t
L (t ) ≤−

(
N K − c1 − c2N2 − 1

2τ

)∫ l

0
ξ2

xt d x −
(

N K − c1 + e−2τ

2τ

)∫ l

0
z2

x(x,1)d x

−
(
N K − c2N2 − c3(1+2N3)N3

)∫ l

0
S2

t d x − D

4

∫ l

0
ξ2

x d x

−
[

G2N2 − c1 − c4

(
1+ 4

D

)]∫ l

0
(3S −ξ−ux)2 d x − (3DN3 − c2N2 − c4)

∫ l

0
S2

x d x

−2δN3

∫ l

0
S2 d x − ρ

2

∫ l

0
u2

t d x − e−2τ

2τ

∫ l

0

∫ 1

0
z2

x(x,η)dηd x.

(4.4.41)

Primeiramente, vamos escolher N2 suficientemente grande, tal que

G2N2 − c1 − c4

(
1+ 4

D

)
> 0. (4.4.42)

Em seguida, selecionamos N3 grande o suficiente, tal que

3DN3 − c2N2 − c4 > 0. (4.4.43)
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Agora, escolhendo N suficientemente grande, i.e.,

N > max
{(

c1 + c2N2 +1/2τ
)
K −1, c1K −1,

(
c2N2 + c3(1+2N3)N3

)
K −1, σ2

}
(4.4.44)

e aplicando a desigualdade de Poincaré, obtemos

d

d t
L (t ) ≤−σ3

∫ l

0

(
u2

t +ξ2
t +S2

t +ξ2
x +S2

x +S2 + (3S −ξ−ux)2 + z2(x,1)+
∫ 1

0
z2 dη

)
d x

≤ −σ3

∫ l

0

(
u2

t +ξ2
t +S2

t +ξ2
x +S2

x +S2 + (3S −ξ−ux)2 +
∫ 1

0
z2 dη

)
d x,

(4.4.45)

para alguma constante positiva σ3. Portanto, de (4.4.1), temos

d

d t
L (t ) ≤−σ4E(t ), para todo t > 0. (4.4.46)

Em vista de (4.4.39) e (4.4.46), notamos que

d

d t
L (t ) ≤−σ4

κ2
L (t ), para todo t > 0, (4.4.47)

o que leva a
L (t ) ≤L (0)e−σ4

κ2
t , para todo t > 0. (4.4.48)

O resultado desejado (4.4.33) segue usando estimativas (4.4.39) e (4.4.48). Então, a prova do
Teorema 4.10 está completa.

4.4.4 Estabilidade polinomial

Nesta seção, mostraremos que o semigrupo relacionado ao sistema de vigas laminadas (4.2.3)–
(4.2.5) decai polinomialmente com taxa t−1/2, se χ ̸= 0. Mas primeiro, precisamos nos lembrar de
uma noção intermediária de estabilidade, conhecida como estabilidade semiuniforme. Por definição,
dizemos que o semigrupo T (t) é semiuniformemente estável se existe uma função não negativa
ψ(t ) que se anula no infinito tal que

∥T (t )U0∥H ≤ψ(t )∥AU0∥H , para todo U0 ∈ D(A ). (4.4.49)

A noção de estabilidade semiuniforme produz um conceito mais forte do que estabilidade. Mais
precisamente, garante a convergência T (t )U0 → 0 para todo U0 ∈ D(A ), e como T (t ) é limitado, ele
imediatamente segue a convergência T (t )U0 → 0 para todoU0 ∈H .

Em relação à estabilidade semiuniforme, temos o seguinte resultado:

Teorema 4.11 (Batty (BATTY, 1994; BATTY; DUYCKAERTS, 2008))
O semigrupo T (t ) é semiuniformemente estável se, e somente se, σ(A )∩ iR=∅.

Para garantir que σ(A )∩ iR=∅, precisamos do resultado dado na proposição abaixo.

Proposição 4.12
D(A )⋐H , i.e., a inclusão D(A ) ⊂H é compacta.
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Demonstração. SejaUn = (
un , wn ,ξn , vn ,Sn , yn , zn

)⊤ uma sequência limitada em D(A ). Em parti-
cular, temos

un é limitado em H 2(0, l )⋐ H 1
a(0, l ), Sn é limitado em H 2(0, l )⋐ H 1

b (0, l ),

wn é limitado em H 1
a(0, l )⋐ L2(0, l ), vn , yn é limitado em H 1

b (0, l )⋐ L2(0, l ),

zn é limitado em H 1
b

(
(0, l ); H 1(0,1)

)
⋐ L2((0, l ); H 1(0,1)

)
.

Consequentemente, existem u,S ∈ H 1(0, l ), w, v, y ∈ L2(0, l ) e z ∈ L2
(
(0, l ); H 1(0,1)

)
tais que, até

uma subsequência,

un → u em H 1
a(0, l ), Sn → S em H 1

b (0, l ), wn → w em L2(0, l ) (4.4.50)

e

vn → v em L2(0, l ), yn → y em L2(0, l ), zn → z em L2((0, l ); H 1(0,1)
)
. (4.4.51)

Resta provar a convergência ξn → ξ em H 1
b (0, l ) para algum ξ em H 1

b (0, l ). De fato, sabendo que

Dξn +µ1vn +µ2zn(·,1) é limitado em H 2(0, l ),

obtemos a convergência, até uma subsequência

Dξn +µ1vn +µ2zn(·,1) → ζ em H 1
b (0, l ),

Por (4.4.51), concluímos que ξn → ξ := D−1
(
ζ−µ1v −µ2z(·,1)

)
em H 1

b (0, l ).

Observação 4.13
Como D(A )⋐H , a inversa A −1 é compacta. Segue imediatamente do Lema 4.14 (abaixo) que o
espectro de A consiste inteiramente de autovalores isolados.

Lema 4.14 (Kato (KATO, 1980), Theorem 6.29)
Seja A : D(A ) ⊂ X → X um operador linear fechado atuando em um espaço de Banach complexo
X . Se A for invertível e o operador inverso A −1 for compacto, então o espectro de A consiste
inteiramente de autovalores isolados.

Lema 4.15
Sob as notações acima temos que σ(A )∩ iR=∅.

Demonstração. Como o espectro de A consiste inteiramente de autovalores isolados, podemos
supor, por contradição, que A tem um autovalor imaginário, i.e.,

(iλ−A )U = 0, λ ∈R\ {0}, (4.4.52)
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ondeU = (
u, w,ξ, v,S, y, z

)⊤ ∈ D(A ) \ {0}. Em coordenadas, temos que

iλu −w = 0, (4.4.53)

iλρw +G(3S −ξ−ux)x = 0, (4.4.54)

iλξ− v = 0, (4.4.55)

iλIρv −Dξxx −G(3S −ξ−ux)−µ1vxx −µ2zxx(x,1) = 0, (4.4.56)

iλS − y = 0, (4.4.57)

iλ3Iρy −3DSxx +3G(3S −ξ−ux)+4δS +γy = 0, (4.4.58)

λτz + zη = 0. (4.4.59)

Da estimativa (4.2.14), obtemos vx = y = zx (x,1) = 0. Usando a desigualdade de Poincaré, temos que
v = 0, o que implica que ξ= ξx = ξxx = vxx = 0 (veja a Eq. (4.4.55)). De y = 0, temos que S = Sx = 0

(veja Eq. (4.4.57)) e zx(x,1) = 0 implica que zxx(x,1) = 0. Por outro lado, da Eq. (4.4.56), obtemos
que

ux = 0 ⇒ u = 0. (4.4.60)

Consequentemente, 3S −ξ−ux = 0. Da Eq. (4.4.54), deduzimos que w = 0. Isso implica queU = 0.
Mas isso é uma contradição, portanto não há autovalores imaginários.

Nesta fase, podemos usar o seguinte Teorema:

Teorema 4.16 (Borichev & Tomilov (BORICHEV; TOMILOV, 2010), Theorem 2.4)
Seja T (t) = eA t um semigrupo de contração em um espaço de Hilbert complexo X . Suponha que
iR⊂ ϱ(A ). Então, para cada α> 0 fixo,

∥(iλI −A )−1∥L (H ) =O(|λ|α) quando |λ|→∞

se, e somente se,
∥T (t )A −1∥L (H ) =O(t−1/α) quando t →∞.

Para provar a taxa de decaimento polinomial, consideramos aqui a equação resolvente escrita como(
iλ−A

)
U = F, (4.4.61)

ondeU = (
u, w,ξ, v,S, y, z

)⊤ e F = (
f1, f2, f3, f4, f5, f6, f7

)⊤ ∈H . Em coordenadas, temos que

iλu −w = f1, (4.4.62)

iλρw +G(3S −ξ−ux)x = ρ f2, (4.4.63)

iλξ− v = f3, (4.4.64)

iλIρv −Dξxx −G(3S −ξ−ux)−µ1vxx −µ2zxx(x,1) = Iρ f4, (4.4.65)

iλS − y = f5, (4.4.66)

iλ3Iρy −3DSxx +3G(3S −ξ−ux)+4δS +γy = 3Iρ f6, (4.4.67)

λτz + zη = τ f7. (4.4.68)
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Por outro lado, segue de (4.2.14) que

K
(∥vx∥2 +∥y∥2 +∥zx(x,1)∥2)≤C∥U∥H ∥F∥H . (4.4.69)

Considerando o sistema (4.4.62)–(4.4.68), obtêm-se os seguintes lemas.

Lema 4.17
Seja

(
u, w,ξ, v,S, y, z

)⊤ uma solução do sistema (4.4.62)–(4.4.68). Então existe uma constante posi-
tiva C , independente de λ, tal que

∥3S −ξ−ux∥2 ≤ ε∥U∥2
H +λ2C∥U∥H ∥F∥H , para todo ε> 0.

Demonstração. Multiplicando a Eq. (4.4.65) por 3S −ξ−ux e integrando sobre [0, l ], obtemos

iλIρ

∫ l

0
v(3S −ξ−ux)d x + D

∫ l

0
ξx(3S −ξ−ux)xd x︸ ︷︷ ︸

I1:=

−G∥3S −ξ−ux∥2

+µ1

∫ l

0
vx(3S −ξ−ux)xd x︸ ︷︷ ︸

I2:=

+ µ2

∫ l

0
zx(x,1)(3S −ξ−ux)xd x︸ ︷︷ ︸

I3:=

= Iρ

∫ l

0
f4(3S −ξ−ux)d x. (4.4.70)

Da Eq. (4.4.63) e (4.4.64), temos que

I1 := D
∫ l

0
ξx(3S −ξ−ux)x = iλ

ρD

G

∫ l

0
ξx wd x + ρD

G

∫ l

0
f 2ξx d x

= ρD

G

∫ l

0
vx w d x + ρD

G

∫ l

0
f3,x w d x + ρD

G

∫ l

0
f 2ξx d x. (4.4.71)

Por outro lado, usando a Eq. (4.4.63) em I2 e I3, temos que

I2 :=µ1

∫ l

0
vx(3S −ξ−ux)x d x = iλ

ρµ1

G

∫ l

0
vx w d x + ρµ1

G

∫ l

0
f 2vx d x (4.4.72)

e

I3 :=µ2

∫ l

0
zx(x,1)(3S −ξ−ux)xd x = iλ

ρµ2

G

∫ l

0
zx(x,1)wd x + ρµ2

G

∫ l

0
f 2zx(x,1)d x. (4.4.73)

Consequentemente, de (4.4.70), (4.4.71), (4.4.72) e (4.4.73), obtemos

G∥3S −ξ−ux∥2 = iλIρ

∫ l

0
v(3S −ξ−ux)d x + ρD

G

∫ l

0
vx w d x + ρD

G

∫ l

0
f3,x w d x

+ρD

G

∫ l

0
f 2ξx d x + iλ

ρµ1

G

∫ l

0
vx w d x + ρµ1

G

∫ l

0
f 2vx d x

+iλ
ρµ2

G

∫ l

0
zx(x,1)wd x + ρµ2

G

∫ l

0
f 2zx(x,1)d x. (4.4.74)

Usando a desigualdade de Young e a estimativa (4.4.69), obtemos

G

2
∥3S −ξ−ux∥2 ≤ Gε

2
∥w∥2 +λ2C∥U∥H ∥F∥H .

Isso conclui a prova.
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Lema 4.18
Seja

(
u, w,ξ, v,S, y, z

)⊤ uma solução do sistema (4.4.62)–(4.4.68). Então existe uma constante posi-
tiva C , independente de λ, tal que

∥Sx∥2 +∥S∥2 ≤ εC∥U∥2
H +λ2C∥U∥H ∥F∥H , para todo ε> 0.

Demonstração. Multiplicando a Eq. (4.4.67) por S e integrando sobre [0, l ], obtemos

3D∥Sx∥2 +4δ∥S∥2 =−iλ3Iρ

∫ l

0
yS d x −3G

∫ l

0
(3S −ξ−ux)S d x −γ

∫ l

0
yS d x +3Iρ

∫ l

0
f6S d x.

Usando as desigualdades de Cauchy–Schwarz, Young, Poincaré e a estimativa (4.4.69), obtemos

3D∥Sx∥2 +3δ∥S∥2 ≤λC∥y∥2 +C∥3S −ξ−ux∥2 +C∥U∥H ∥F∥H (4.4.75)

e

3D∥Sx∥2 +3δ∥S∥2 ≤C∥3S −ξ−ux∥2 +|λ|C∥U∥H ∥F∥H +C∥U∥H ∥F∥H . (4.4.76)

Finalmente, usando o Lema 4.17 obtemos

3D∥Sx∥2 +3δ∥S∥2 ≤ ε∥U∥2
H +λ2C∥U∥H ∥F∥H +|λ|C∥U∥H ∥F∥H +C∥U∥H ∥F∥H . (4.4.77)

Isso completa a prova do Lema.

Lema 4.19
Seja

(
u, w,ξ, v,S, y, z

)⊤ uma solução do sistema (4.4.62)–(4.4.68). Então existe uma constante posi-
tiva C , independente de λ, tal que

∥ξx∥2 ≤ εC∥U∥2
H +λ2C∥U∥H ∥F∥H , para todo ε> 0. (4.4.78)

Demonstração. Multiplicando a Eq. (4.4.65) por ξ e integrando sobre [0, l ], obtemos

D∥ξx∥2 = −iλIρ

∫ l

0
vξd x +G

∫ l

0
(3S −ξ−ux)ξd x −µ1

∫ l

0
yxξx d x︸ ︷︷ ︸

I4:=

−µ2

∫ l

0
zx(x,1)ξx d x + Iρ

∫ l

0
f4ξd x. (4.4.79)

Usando a Eq. (4.4.66) em I4, as desigualdades de Cauchy–Schwarz, Young, Poincaré e a estimativa
(4.4.69), obtemos

D

2
∥ξx∥2 ≤C∥3S −ξ−ux∥2 +C∥Sx∥2 +λ2C∥U∥H ∥F∥H +C∥U∥H ∥F∥H . (4.4.80)

Finalmente, usando os Lemas 4.17, 4.18, temos que

D∥ξx∥2 ≤ ε∥U∥2
H +λ2C∥U∥H ∥F∥H +C∥U∥H ∥F∥H . (4.4.81)

Isso conclui a prova.
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Lema 4.20
Seja

(
u, w,ξ, v,S, y, z

)⊤ uma solução do sistema (4.4.62)–(4.4.68). Então existe uma constante posi-
tiva C , independente de λ, tal que

∥w∥2 ≤ εC∥U∥2
H +λ2C∥U∥H ∥F∥H , para todo ε> 0,

desde que |λ| > 1.

Demonstração. Multiplicando a Eq. (4.4.63) por −iλ−1w e integrando sobre [0, l ], obtemos

ρ∥w∥2 + iG

λ

∫ l

0
(3S −ξ−ux)w x d x =− iρ

λ

∫ l

0
f2w d x. (4.4.82)

De (4.4.62), temos w x = (iλux − f 1,x) e, consequentemente,

ρ∥w∥2 = G
∫ l

0
(3S −ξ−ux)ux d x + iG

λ

∫ l

0
f1,x(3S −ξ−ux)d x − iρ

λ

∫ l

0
f2w d x

= −G∥3S −ξ−ux∥2 +G
∫ l

0
(3S −ξ−ux)(3S −ξ)d x

+ iG

λ

∫ l

0
f1,x(3S −ξ−ux)d x − iρ

λ

∫ l

0
f2w d x. (4.4.83)

Usando as desigualdades de Cauchy–Schwarz e Young e os Lemas 4.17, 4.18 e 4.19, temos que

ρ∥w∥2 ≤C∥3S −ξ−ux∥2 +εC∥Sx∥2 +εC∥ξx∥2 + C

|λ|∥U∥H ∥F∥H

e

ρ∥w∥2 ≤ ε∥U∥2
H +λ2C∥U∥H ∥F∥H + C

|λ|∥U∥H ∥F∥H

Isso completa a prova do Lema.

Lema 4.21
Seja

(
u, w,ξ, v,S, y, z

)⊤ uma solução do sistema (4.4.62)–(4.4.68). Então existe uma constante posi-
tiva C , independente de λ, tal que∫ 1

0
∥zx∥2 dρ ≤C∥U∥H ∥F∥H ,

desde que |λ| > 1.

Demonstração. Diferenciando (4.4.68) em relação a x e multiplicando o resultado por zx e logo em
seguida, integrando sobre [0, l ]× [0,1], obtemos

iλτ
∫ 1

0
∥zx∥2 dη+ 1

2
∥zx(x,1)∥2 = 1

2
∥zx(x,0)∥2 +τ

∫ l

0

∫ 1

0
f7,x zx d xdη. (4.4.84)

Assim, tomando a parte imaginária, temos que

|λ|
∫ 1

0
∥zx∥2 dη≤C∥U∥H ∥F∥H . (4.4.85)

Isso conclui a prova.
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Estamos agora em condições de provar o seguinte resultado de decaimento polinomial:

Teorema 4.22 (Decaimento polinomial)
Suponhamos que χ ̸= 0. Então o semigrupo T (t ) associado ao sistema (4.4.62)–(4.4.68) satisfaz

∥T (t )U0∥H ≤ C

t 1/2
∥U0∥D(A ), para todo t > 0, U0 ∈ D(A ). (4.4.86)

Demonstração. Do Lema 4.15, temos iR⊂ ϱ(A ). Então usaremos o Teorema 4.16 para mostrar a
estabilidade polinomial. Segue dos Lemas 4.17, 4.18, 4.19, 4.20 e 4.21 que

∥w∥2 +∥ξx∥2 +∥Sx∥2 +∥S∥2 +∥3S −ξ−wx∥2 ≤ εC∥U∥2
H +λ2C∥U∥H ∥F∥H . (4.4.87)

Usando a desigualdade de Poincaré na estimativa (4.4.69), temos que

∥v∥2 +∥y∥2 ≤C∥U∥H ∥F∥H . (4.4.88)

Adicionando (4.4.87) e (4.4.88), obtemos que

∥U∥2
H ≤ εC∥U∥2

H +λ2C∥U∥H ∥F∥H . (4.4.89)

Consequentemente, temos que

(1−2εC )∥U∥2
H ≤λ4C∥F∥2

H . (4.4.90)

Agora, escolhemos ε suficientemente pequeno, tal que 1−2εC > 0. Então, após o uso de (4.4.61),
segue que

1

λ2
∥(iλI −A )−1F∥H ≤C∥F∥H . (4.4.91)

Portanto, a partir do Teorema de Borichev e Tomilov (ver Teorema 4.16), provamos que a solução
decai polinomialmente (lento) com taxa t−1/2 à medida que o tempo vai para o infinito.
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