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Resumo

Este trabalho trata da existéncia global de solucdo e do comportamento assintético para trés modelos
distintos: a equacao de onda, inchamento de solos elasticos porosos com saturacao de fluido, e o
modelo de vigas laminadas. Para todos os modelos, é aplicada a teoria dos semigrupos para provar
a existéncia global da solucdo. Na anélise do comportamento assintotico, sdo aplicadas técnicas
distintas. Nos dois primeiros modelos citados acima, considera-se a acdo dos pesos e o retardo
nao constantes. O decaimento exponencial é provado usando o método dos multiplicadores. Para
o modelo de vigas laminadas, levando-se em conta a acdo do amortecimento viscoelastico e um
forte retardo de tempo, duas situacoes sdo observadas: estabilidade exponencial se a velocidade de
propagacdo das ondas for a mesma, caso contrario, o decaimento polinomial com taxa ¢!/2.

Palavras-chave: Equacao de ondas, inchaco elastico poroso, vigas laminadas, pesos e retardo nao

constantes, retardo de Kelvin-Voigt, retardo forte, decaimento exponencial, decaimento polinomial.






Abstract

This work deals with the global existence of solution and the asymptotic behavior for three distinct
models: The wave equation, swelling of porous elastic soils with a saturation of fluid, and the
laminated beams model. For all models, is applied the semigroup theory to prove the global existence
of the solution. In the analysis of the asymptotic behavior, are applied distinct technics. In the first
two models cited above, is considered the action of weights and non-constants delay. The exponential
decay is proved by using the multipliers method. For the laminated beams model, is take into account
the action of viscoelastic damping and a strong time delay, two situations are observed: Exponential
stability if the propagation speed of the waves is the same, otherwise, the polynomial decay with

rate r1/2,

Keywords: Wave equation, porous elastic swelling, laminated beams, non-constant weights and

delay, Kelvin-Voigt delay, strong delay, exponential decay, polynomial decay.
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Introducao

O estudo de equacoes diferenciais parciais (EDP’s) esta presente em diversas areas da mate-
matica, como por exemplo: analise matematica, teoria da medida, topologia, geometria diferencial,
ciéncia da computacdo. Nos Ultimos anos, a aplicacdo de EDP’s para modelar fenémenos fisicos reais,
se tornou também, uma ferramenta importante para outras areas, como a ciéncia dos materiais,
mecanica dos fluidos, mecanica quantica, matematica financeira, biologia e biomedicina e ciéncias

ambientais.

Dentre os diversos ramos de estudo das equacoes diferenciais parciais, neste trabalho é inves-
tigado o comportamento assintético das solucdes de sistemas dissipativos. Na literatura, diferentes
técnicas tém sido utilizadas em problemas de estabilidade, a exemplo, do método de Kormonik ((KO-
MORNIK; ZUAZUA, 1990)), do método de Nakao ((NAKAO, 1977)) e do método de energia ((RIVERA,

1992)). Nesse sentido, foram adotadas duas técnicas analiticas para obter a estabilidade.

Para a estabilidade exponencial foi aplicado o método dos multiplicadores (A. Haraux (HARAUX,
1985) e V. Komornik (KOMORNIK, 1994)). Para a prova do decaimento polinomial foram analisadas
as normas uniformes, a partir do método desenvolvido por A. Borichev e Y. Tomilov (BORICHEV;
TOMILOV, 2010).

A proposta do presente trabalho é estudar a existéncia global e o comportamento assintotico
de solucoes de trés modelos distintos governados por equacoes diferenciais parciais, os quais estao
sob a acdo de uma forca de retardo. O retardo, em certos casos pode provocar a explosao da
solucdo em tempo finito, para um sistema que sem a acdo do retardo é assintoticamente estavel.
Estes modelos foram selecionados dentre os trabalhos publicados, os quais estdo relacionados no

apéndice.

O trabalho esta organizado em quatro capitulos. No primeiro sdo apresentadas as principais
ferramentas da teoria da Analise Funcional, de espacos de Sobolev, de semigrupos de classe Cy e
resultados sobre estabilidade exponencial e polinomial de sistemas dissipativos. Estes resultados
serao utilizados nos demais capitulos, que sdo independentes um do outro e abordam problemas

especificos.

Ressaltamos que com esta estrutura, para facilitar a compreensao do texto, cada capitulo
possui uma introducao especifica, onde sao apresentados revisoes da literatura, descrevendo a

importancia do problema proposto e um detalhamento de como o capitulo esta estruturado.



2 Introducgédo

No Capitulo 2, consideramos a equacao de ondas com retardo e pesos nao constantes dada
por

Ure (X, 1) — Uy (X, 8) + 1 (D ue(x, 8) + pa (D ue(x, t—1(8)) =0

em um dominio limitado. Sob condi¢es adequadas sobre os pesos nao constantes () e u,(t) e
sobre o retardo nao constante 7 (), provamos a existéncia da solucao global combinando a teoria de
semigrupos com a técnica da norma variavel de Kato e para a prova do decaimento exponencial foi

utilizado o método da energia.

No Capitulo 3, estudamos a solucao global e a estabilidade exponencial para o sistema unidi-
mensional na teoria isotérmica linear de solos elasticos porosos inchados sujeitos a pesos e retardo

variaveis no tempo, dado por

PzZrt — A1 Zxx — ApUxx + U1 (D) 2 + P2 () 2 (x, t —1(2)) = 0,

Pullty — A3Uxy — ApZxx = 0.

A existéncia da solucao global para o problema em questao foi provada utilizando a mesma técnica
usada no Capitulo 2. Para provar a estabilidade exponencial, aplicamos o método da energia sem a

suposicao de velocidades de ondas iguais.

No Capitulo 4, foi considerado um modelo de vigas laminadas combinando amortecimento

viscoelastico e forte amortecimento retardado. O sistema é descrito pelas seguintes equacoes

pug+ Gy —uy)x =0,
IpBS=) et —DBS =) xx — G — uy) = 1 BS — W) xxt — H2(BS — Y)xxe (X, £ —T) = 0,
3IpSn - 3DSxx +3G(1//— ux) +46S+4'}’S[ =0.

A solucao global é provada usando a teoria de semigrupos de operadores lineares. Também foi
provado a falta de estabilidade exponencial quando a velocidade de propagacoes das ondas nao sao
iguais. De fato, foi mostrado nesta situacio que o sistema vai a zero polinomialmente com taxa t~1/2.
Por outro lado, construindo alguns multiplicadores adequados, foi estabelecido que a energia decai

exponencialmente desde que a velocidade de propagacoes de onda se mantenham.



Capitulo 1

Preliminares

Neste capitulo enunciaremos os conceitos basicos e apresentamos os resultados teéricos cujas
demonstracdes podem ser encontradas nas referéncias citadas.

1.1 Analise Funcional e Teoria Espectral

Nesta secao vamos definir e apresentar alguns resultados de Analise Funcional e Teoria Espectral

que serao muito importantes para o desenvolvimento de todo o trabalho.

Definicao 1.1
Seja X um espaco vetorial sobre o corpo K, onde K pode ser R ou C. Um norma em K é uma funcao

[-1l: X — [0,00) que satisfaz as seguintes propriedades para quaisquer x, ye X e A € K:

(i) lIxllx=0e|x|llx =0 se, e somente se, x =0;
(i) IAxlx=IAlIx]x;

) e+ ] = e+ Iyl

Um espaco vetorial normado é um par (X, | - |l x) onde X é um espaco vetorial e || - || x € uma
norma em X. Quando nao houver perigo de ambiguidade, escreveremos apenas || - || ao invés de
-1 x.

Anorma || - || em um espaco vetorial E sempre esta associada a uma métricad : X x X — [0,00)
dada por

dx,y):=||x—y||, vx ye X.

Definicao 1.2 (Espacos de Banach)
Um espaco vetorial normado cuja métrica associada é completa é chamado de espaco vetorial

completo, ou Espaco de Banach.
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Definicdo 1.3 (Forma sesquilinear)
Seja E um espaco vetorial complexo. Uma forma sesquilinear em E é uma aplicacdo a: E x E — C,

que satisfaz as seguintes condicoes, para quaisquer u,v,we Ee A €C:

(i) atu+v,w)=alu,w)+alv, w);
(i) a(lu, w) = Aa(u, w);
(iii) a(u,v+w)=a(u,v)+au, w);
(iv) a(u, Aw) = Aa(u, w).

Definicao 1.4
Uma forma sesquilinear a sobre um espaco normado X é denominada limitada ou continua se existe

uma constante C > 0 tal que
la(u, v)| < Cllullllvl, paratodo u,ve X.

Definicao 1.5
Uma forma sesquilinear a sobre um espaco normado X é dita coerciva se existe uma constante § >0
tal que

la(v,v)| = Bllvl, paratodove X.

Definicao 1.6
Seja E um espaco vetorial complexo. Um funcional T : E — C é dito linear se satisfaz as seguintes

propriedades, para quaisquer u,ve Ee A€ C:

(i) Tw+v)y=Tw)+T(v);

(i) TAw) =AT(w;
e é dito antilinear se

(i) Tw+vy=TwWw)+T);
(i) T(Auw) =AT(w).

Definicao 1.7
Um funcional T : X — C, sobre um espaco normado X é dito limitado se existe uma constante C >0
tal que

|T(w)|<Cllull, paratodouceX.

Se X e Y forem espacos vetoriais normados, denotaremos por L(X;Y) a classe dos operadores

lineares de X em Y e por £ (X;Y) a classe dos operadores lineares e limitados de X em Y.

O préximo resultado nos traz varias equivaléncias sobre a continuidade de um operador linear:
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Teorema 1.8

Seja u € L(X;Y). Sao equivalentes:

(i) u é lipschitziano;
(ii) u é uniformemente continuo;
(iii) u é continuo;
(iv) u é continuo em algum ponto de X;
(v) u é continuo na origem;
(vi) sup{llu()l; xe X e llxll <1} <oo;

(vii) Existe uma constante C > 0 tal que ||u(x)| < C| x|l para todo x € X.
Demonstracdo. Veja ((BOTELHO; PELLEGRINO; TEXEIRA, 2015), Teorema 2.1.1) O

E facil ver que £ (X;Y) é um espaco vetorial com as operacdes usuais e que os itens (vi) e
(vii) do teorema anterior definem uma normaem £ (X;Y):
Proposiciao 1.9
Sejam X e Y espacos vetoriais normados.
(i) A expressao
lull =sup{lu(x)ll; xe Xe [x|l <1}
define uma norma no espaco £ (X;Y);

(i) lu@)ll < lullllx|l paratodo ue L(X;Y)e xe X;

(iii) Se Y for Banach, entdo £ (X;Y) também é Banach.
Demonstracdo. Veja ((BOTELHO; PELLEGRINO; TEXEIRA, 2015), Teorema 2.1.4) O]

Quando Y =K, ao invés de escrevermos £ (X;K), denotaremos por E’ e chamaremos de
espaco dual topolégico de X, ou simplesmente dual de X, e seus elementos sao funcionais lineares.

Como K é completo, segue que X’ é Banach.

Teorema 1.10 (Hahn-Banach)

Seja E um espaco vetorial complexo e p : E — [0,00) um funcional sublinear, isto é,

(i) pu+v)<p)+p), paratodou,veeE;

(i) plau)=|alp(u), paratodoueE, acC.
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Se f: Z — C é um funcional linear definido no subespaco Z c E com | f(u)| < p(u), entdo f possui

uma extensao linear F: Z — C dominada por p, ou seja,
F(w) = f(w) paratodo we Z, e |F(u)| < p(u) paratodo ueE.

F é chamada de extensao de Hahn-Banach de f.

Demonstracdo. Veja ((BOTELHO; PELLEGRINO; TEXEIRA, 2015), Teorema 3.1.2). O

Definicao 1.11

Seja X um espaco vetorial sobre K. Um produto interno em X é uma funcao
(,): XxX—-K

que satisfaz:

(i) (u, v+ w)=(u,v)y+{(u w), paratodo u,v,we X;
(ii) (u,Avy = Au,v), paratodo u,ve X, e Le K.

Definicdo 1.12 (Espaco de Hilbert)
Um espaco vetorial H com produto interno que é completo na norma induzida pelo produto interno,
isto é || - II% = (-, ), é denominado de espaco de Hilbert. Em particular, um espaco de Hilbert é um

espaco de Banach.

Teorema 1.13 (Lax-Milgran)
Sejam H um espaco de Hilbert e a: H x H — C uma forma sesquilinear limitada e coerciva. Entao,

para todo funcional T : H — C antilinear limitado, existe um Unico u € H tal que

a(u,v)=T(v), paratodove H.

Demonstracdo. Veja ((BREZIS, 2010), Corollary 5.8). O

Teorema 1.14 (Desigualdade de Young)

Sejam1<p<ooep’€|]%taisque%+%:1. Entdo

a? b”
abs—+—,
p p
para todos a, b = 0.
Demonstracdo. Veja ((BREZIS, 2010), Theorem 4.6). O

Proposicao 1.15 (Desigualdade de Cauchy-Schwarz)

Seja E um espaco vetorial com produto interno. Entao

1 < Ixlelyle,

para quaisquer x,y € E. Além disso, a igualdade ocorre se, e somente se, os vetores x e y sao

linearmente dependentes.
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Demonstracdo. Veja ((BOTELHO; PELLEGRINO; TEXEIRA, 2015), Proposicao 5.1.2). l

Definicao 1.16
Sejam X um espaco de Banach e o/ : D(«f) € X — X. O conjunto resolvente de o/ é defindo por

o) =AeC; M -o) 11 X - XeL(X, X))

e o espectro de o é dado por
o(ef) =C\p(ef),

formado por trés subconjuntos distintos

(i) o espectro pontual op(/): 0 conjunto de seus autovalores, i.e., o conjunto formado pelos

A € C tais que AT — &/ nao é injetivo;

(ii) o espectro continuo o.(<f): o conjunto dos A € C tais que A — </ é um operador injetivo, tem
imagem densa em X, mas (A] — /)~ : Im(AI — of) — X é ilimitado;

(iii) o espectro residual o, («7): o conjunto dos A € C tais que AI — </ é um operador injetivo mas

sua imagem nao é densa em X.

Definicao 1.17
Um operador linear T : D(T) ¢ V — W com dominio D(T) é fechado, se para toda sequéncia

(vp)eD(M talquev,—veVeTv,—weW,tem-seveD(T)eTv=uw.

Teorema 1.18
Seja o/ um operador linear fechado em um espaco de Hilbert H tal que o operador resolvente
(Aol — /)" existe e é compacto para algum . Entio o espectro o(«/) = C\p(«f) é constituido

apenas de autovalores de o com multiplicidade finita.

Demonstracdo. Veja ((KATO, 1980), Theorem 6.29). O

1.2 Espacos funcionais e espacos de Sobolev

Nesta secao, definiremos os espacos funcionais necessarios para o desenvolvimento deste

trabalho. De agora em diante, Q cR", n > 1, denotard um conjunto aberto e limitado.

Definicao 1.19

Seja u: Q) — R uma aplicacao continua. O suporte de u, que sera denotado por supp(u) € definido
como o fecho do conjunto {x € Q; u(x) # 0} em Q. Se supp(u) for um compacto em Q entao dizemos
gue u possui suporte compacto. Denotamos por Cy(Q2) ao espaco das funcdes continuas em 2 com

suporte compacto.
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Definicao 1.20
C™(Q) é o espaco das funcdes com todas as derivadas parciais de ordem < m continuas em Q (m

inteiro ndo-negativo ou m = co). Denotaremos C%(Q) = C(Q).

Definicao 1.21
O conjunto das funcdes ¢ : Q — R que possuem todas as derivadas até a ordem m continuasem Q e
que tém suporte compacto, sendo que esse suporte depende de ¢, € denotado por CJ*(Q2) (ou C§°

se m = oo).

Definicao 1.22
Uma sequéncia (¢y)ven de fungdes de C3°(Q2) converge para zero quando existe K < Q compacto tal

que:
(i) supp(¢,) c K, paratodo v eN;
(ii) Paracada a = (a1, as,...,a,) e N,
D%p, — 0 uniformemente em K,

onde D denota o operador derivacdo de ordem a definido por

5!
a15,.02 A..0n’
0x,'0x,”---0xy,

onde |la|l=aj+ay+---+ay.

Definicao 1.23
O espaco vetorial C;°(€2) com a nogao de convergéncia definida acima é representado por 2(Q) €

denominado espaco das funcoes testes em Q.

Definicdo 1.24
Seja 1 < p < oco. Denotamos por LP(Q) o espaco de Banach das (classes de) funcdes definidas em Q

com valores reais, tais que |u|? é integravel no sentido de Lebesgue em Q2 com norma

1
IIuIILp=(fQ|u(x)|”dx)p, para 1<p<oo.

Para p = oo, denotamos por L>°(Q) o espaco de Banach das (classes de) fungdes mensuraveis

definidas em Q que sao essencialmente limitadas com a norma dada por
lull oo = supess,cqlu(x)| =inf{C € R; |u(x)| = C g.t.p. em Q}.

Definicao 1.25
Sejam Q = (a,b) com —co<a,b<ocoe peRcom 1< p <oo. O espaco de Sobolev WP (Q) é
definido como

b

b
Wl"’(Q):{ueL’”(Q);EluxeL”(Q) comf u<pxdx:—f ux(pdx,V(pECol(Q)}.
a a
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O espaco W?(Q) é um espaco de Banach com a norma

1
leelpre = (e, + luxl D)7

Quando p =2, denotamos H!(Q) = W!?(Q). O espaco H'(Q) é um espaco de Hilbert equipado com
o produto interno

b
(U, V) g =AU, V)2 + (U, UVx) 12 :f (Uv+ uyvy)dx.
a

Proposicao 1.26

0 espaco WP (Q) é reflexivo para 1 < p < oo e separavel para 1 < p < co.

Demonstracdo. Veja ((BREZIS, 2010), Proposition 8.1). ]

Definicao 1.27

Dado um inteiro m =2 e um numero real 1 < p < oo definimos, por recorréncia, o espaco
WmP(Q) ={ue W"P(Q);D'ue WP (Q)},

com a notacio D'u = u,, equipado com a norma

m
lellwmp = llullr + ) 1D ull L.
i=1

E também definimos

H™(Q) = W™2(Q),

equipado com o produto interno

m . . b m b .
(u, vy 2 = {u, v)Lz+Z(D’u,D’v)Lz :f uvdx+z D'uD'vdx.
a

i=1 i=1Ja

Seja Q um aberto do R”. ParameNe 1l < p < oo, W™"P(Q) é definido como o espaco
das funcoes u € LP(Q) cujas derivadas distribucionais até a ordem m também estdo em LP(Q).
E bem conhecido, ver (BREZIS, 2010) que WP & um espaco de Banach separavel, reflexivo e

uniformemente convexo com a norma

1

»
IIMIIWmvP(Q):( ) IID“ullﬁp(m) )

lal=m

(11 an
ondea = (ay,...,a,)eN", la|=a1+---+a, e D¥ = (%) ' (%) . Quando p =2, usualmente
denotamos WP (Q) por H™((Q), e este € um espaco de Hilbert com o produto interno correspon-

dente.

A seguir estao mais alguns resultados, dentre eles os de imersdes, que sdo muito importantes.

po
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Teorema 1.28

Existe uma constante C > 0 (que depende somente de |Q| < C) tal que
lullzo < Cllullyrr, Yue WHP(Q), 1<p<oo.

Em outras palavras, WP (Q) — L*®(Q) com imers3do continua para todo 1 < p < oo. Além disso, se

Q é um intervalo limitado entao
(i) Aimersao WP (Q) — C(Q) é compacta para todo 1 < p < oo.
(ii) Aimersdao Wh1(Q) — L9(Q) é compacta para todo 1 < g < .

Demonstracdo. Veja ((BREZIS, 2010), Theorem 8.8). O]

Corolario 1.29

Suponha que Q seja um intervalo ilimitado e u € WP(Q), com 1 < p < co. Entio, para x € Q, tem-se

que
lim u(x)=0.
xeQ
| x|—00
Demonstracdo. Veja ((BREZIS, 2010), Corollary 8.9). O

Corolario 1.30

Sejam u,v € WP com 1 < p < co. Entdo
uve WhP(Q) e (uv)y = uyv+ uvy.

Ademais, vale a formula de integracao por partes

d d .
f uyvdx =uld)v(d)—u(c)v(c) —f uvydx, Vc,deQ.
Cc

c

Demonstracdo. Veja ((BREZIS, 2010), Corollary 8.10). O]

Definicao 1.31
Dado 1 < p < oo, denotamos por Wol’p(Q) o fecho de C& (Q) em WP (Q), equipado com a norma de
wbhrP(Q).

O espaco H(} Q) = WOI'Z(Q) é equipado com o produto interno de H'(Q).

Teorema 1.32

Sejaue WHP(Q). Entdo ue Wol’p(Q) se, e somente se, u =0 em 0Q.
Demonstracdo. Veja ((BREZIS, 2010), Theorem 8.12). O

Uma desigualdade muito importante e que sera utilizada de forma recorrente nesse texto é a

desigualdade de Poincaré.
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1

Teorema 1.33 (Desigualdade de Poincaré)

Suponhamos Q um intervalo limitado. Entdo existe uma constante C), = 0, que depende apenas do

comprimento do intervalo Q, tal que
1,
lulwir < Cplluxlier,  Vue Wy” Q).
1, , . R
Em outras palavras, em W P, llugllr € uma norma equivalente a norma de WhP(Q).

Demonstracdo. Veja ((BREZIS, 2010), Theorem 8.13).

1.3 Semigrupos de classe C, gerados por operadores dissipativos

Nesta secdo vamos descrever as notacoes, definicoes e alguns resultados sobre semigrupos de

classe Cy que serdo usados ao longo do trabalho.

Definicao 1.34 (Semigrupo)

Seja £ (X) a algebra dos operadores lineares limitados de um espaco de Banach X. Dizemos que

uma aplicacdo S: R* — £ (X) é um semigrupo de operadores limitados de X, quando:

(i) S(0) =1, onde I é o operador identidade.

(i) S(t+s)=S(r)S(s), paratodo t,s € R*.

Dizemos que o semigrupo S é de classe Cj se
tlirg1+ I(S()-Dx|l=0, VxeX.
Dizemos que o semigrupo S de classe Cy é limitado, se existir uma constante M > 0 tal que
ISHII<M, V0<t<oo.
Em particular, se M =1, diremos que S € um semigrupo de classe Cy de contracoes.

Definicao 1.35

O operador «f : D(«¢) — X, definido por
Sh)-1

o/ (x) = lim
h—0

x, VxeD(«),

onde D(«f), o dominio de </ é dado por

D(«) = {x € X; existe o limite }liII(l)

Sh)—-1 }
X,
é dito gerador infinitesimal do semigrupo S.

Quando <f é o gerador infinitesimal do semigrupo S, denotamos S(t) = e<".
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Como consequéncia imediata da definicao anterior, temos a seguinte propriedade:

Proposicao 1.36

O conjunto D(«f) € um subespaco vetorial de X e of é um operador linear.

Uma estimativa para o Cy semigrupo S(t) é dada pela propriedade abaixo:

Teorema 1.37

Existe M =1 tal que

1S(t)|l < Me™*, paratodo t =0 sendo w uma constante positiva.
Demonstragdo. Veja ((PAZY, 1983), Theorem 2.2). O

Como consequéncia imediata do teorema anterior, temos o seguinte resultado:

Corolario 1.38

Se S(t) € um Cy semigrupo, entdo para todo x € X, temos que
t— S(H)x e C°([0,00); X).
Além disso, se «f é o gerador infinitesimal de S(t), entao para todo x € D(<f), temos que
t — S(t)x € C°([0,00); D(«#)) N C* ([0,00); X).
Demonstracdo. Veja ((PAZY, 1983), Corollary 2.3). O]

Consideremos agora a seguinte propriedade:

Teorema 1.39

Seja o/ um gerador infinitesimal de um C, semigrupo S(t). Entao
d
S(H)xe D(f) e ES(t)x = S(1)x,
para todo x € D(<).

Demonstragdo. Veja ((PAZY, 1983), Theorem 2.4). O

Corolario 1.40
Seja «f um gerador infinitesimal de um C, semigrupo S(f). Entdo D(«f) é densoem X e of é um

operador linear fechado
Demonstracdo. Veja ((PAZY, 1983), Corollary 2.5). O]

O préximo teorema nos fornece uma caracterizacao dos geradores infinitesimais de semigrupos

Cy de contracoes.
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Teorema 1.41 (Hille-Yosida)
Um operador linear «f sobre X é gerador infinitesimal de um semigrupo Cy, de contracoes S(t), t =0,

se, e somente se,

(i) «f éfechado e D(«) é denso em X.

(ii) existe (AI—<#)~!, paratodo A >0e [|(AI - «/)~!|| < }, onde I é o operador identidade.
Demonstracdo. Veja ((PAZY, 1983), Theorem 3.1). O

A seguir, apresentamos outra caracterizacao dos geradores infinitesimais dos semigrupos C, de
contracoes, o teorema de Lummer-Phillips, o qual sera usado com frequéncia nos préximos capitulos
para obtermos a existéncia e unicidade de solucao para os modelos dissipativos que iremos estudar

nesse trabalho. Para isto, precisaremos de alguns resultados preliminares.

Sejam X’ o dual do espaco de Banach X e (-,-) a dualidade entre X e X’'. Para cada x € X,
introduzimos o conjunto

J(x) = {x*5(x,x*) = | x]1® = [ x*I%}.
Pelo Teorema de Hahn-Banach, J(x) # @, para todo x € X.

Definicao 1.42
Dizemos que o operador linear o«f : D(«f) € X — X é dissipativo se para todo x € D(<f), existe
x* € F(x) tal que

Rt x,x*)y <0,

onde, simbolo R indica a parte real.

Teorema 1.43 (Lummer-Phillips)

Seja o/ um operador linear com dominio D(<«?) denso no espaco de Hilbert X.

(i) Se o« é dissipativo e existe Ay > 0 tal que o conjunto imagem, R(Agl — <), de Aol —<of é X,

entao «f é o gerador infinitesimal de um semigrupo C, de contracoes sobre X.

(i) Se of é o gerador infinitesimal de um semigrupo Cy de contracdes sobre X entao «f é dissipativo
e R(AI-«) =X, paratodo A > 0.

Demonstracdo. Veja ((PAZY, 1983), Theorem 4.3). O]

1.4 Estabilidade

Esta secdo é relacionada com os resultados que estabelecem as condicbes necessarias e

suficientes para a estabilidade de um Cy-semigrupo.
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Definicao 1.44

Um semigrupo S(t) = e’ é exponencialmente estavel se existem constantes a >0 e M = 1 tais que
le’t| < Me™®!, Vt=0.

O préximo resultado, devido a J. Priiss, caracteriza a estabilidade exponencial de um semigrupo

Cy de contracoes.

Teorema 1.45
Seja S(t) = e um semigrupo de classe C, de contracdes sobre um espaco de Hilbert 7. Entio S(t)

€ exponencialmente estavel se, e somente se,

o) > {if; peR = iR

e
limsup || (iBI - «#) "} < 0.
|Bl—o00
Demonstracdo. Veja ((PRUSS, 1984), Corollary 5). O]

Para semigrupos que nao decaem exponencialmente, podemos analisar o decaimento polino-

mial com normas nao uniformes.

Definicdo 1.46

Um semigrupo S(#) = e** é polinomialmente estavel se existem constantes C >0 e Y >0 tais que

C
le? |l 7 < U@, Yue D).

Vamos introduzir a seguinte notacao:
1GAT =)~ I = 0(AI%)
significa que o crescimento de [|(iA] —«/)~!| é da ordem |A|%, ou em outras palavras

1
Wll(i/ll—d)_lFll <C|Fll, VFeR(IA - ).

O préximo resultado, de A. Borichev e Y. Tomilov, caracteriza a estabilidade polinomial de

semigrupos Cy limitados sobre espacos de Hilbert.

Teorema 1.47
Seja S(t) = et um semigrupo Cy limitado sobre um espaco de Hilbert #, tal que iR c p(«/). Entao,

para a > 0 fixado, as seguintes condicoes sao equivalentes:

(i) 1GAI—<)7 I =0(A%), |Al— 0.

(ii) ||S(t),<z¢-1||:o(t—é), [ — 0o,

Demonstracdo. Veja ((BORICHEV; TOMILOV, 2010), Theorem 2.4). O
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Capitulo 2

Equacao de ondas com retardo e pesos nao cons-

tantes

2.1 Introducao

Neste capitulo provamos a existéncia de solucao global e a estabilidade exponencial de energia

para uma equacao de ondas com retardo e pesos nao constantes dada por
Urr (X, 1) = Uxx (X, 8) + iy (D ue(x, 1) + po (D ue(x, t—7(2)) =0 em Qx(0,00), (2.1)
com condicoes de fronteira dadas por
u0,)=u(L,t)=0, V=0, (2.2)
e condicoes iniciais

u(x,0) = up(x), us(x,0) = u1(x), xe€Q, (2.3)
2.3
ur(x,—st(0)) = uz(x,s), (x,8)e2x(0,1),

onde Q =]0, L[ € um intervalo aberto da reta R. u;(x, t) representa o atrito, () representa um
peso variavel no tempo, u(x, t —7(t)) representa um controle sobre o atrito com peso u,(¢) variavel
no tempo conhecido como retardo, que no problema proposto esta sob a acao de uma funcao 7(¢)

real. Os dados iniciais (1, 11, Up) pertencem a adequados espacos funcionais.

Esta abordagem com pesos e retardo variando no tempo, generaliza os resultados encontrados
na literatura. Para ter uma compreensao da importancia deste resultado, apresentamos a seguir uma
revisdo bibliografica com énfase na evolucao histérica e nos aspectos matematicos recentes. No caso
de coeficientes de atrito e de retardo constantes u; e u, respectivamente, destacamos o pioneiro
trabalho de S. Nicaise e C. Pignotti (NICAISE; PIGNOTTI, 2006). Sob pressupostos adequados, os
autores provaram a estabilidade exponencial da solucao introduzindo energias apropriadas e usando
algumas desigualdades de observabilidade. Resultados de instabilidade também foram fornecidos

para o caso de algumas suposicoes nao serem satisfeitas.
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W. Liu (LIU, 2013) estudou a equacao viscoelastica fraca com um termo de atraso interno e
variavel no tempo. Ao introduzir a energia e o funcional de Lyapunov, o autor estabeleceu uma

estimativa geral da taxa de decaimento para a energia sob adequadas hipoteses.

A. Benaissa, A. Benguessoum e S. Messaoudi (BENAISSA; BENGUESSOUM; MESSAOUDI, 2014)
consideraram os pesos, tanto no atrito quanto no retardo p, (¢) e u2(#) em funcao do tempo. Cabe
destacar que os autores levaram em conta o tempo de atraso como uma constante. Para este
problema, a existéncia de solucao foi feita pelo método de Faedo-Galerkin e a estimativa da taxa de

decaimento para a energia foi dada usando o método direto de multiplicadores.

Os trés trabalhos acima citados foram fonte de inspiracao para os resultados obtidos neste

capitulo. Vejamos a seguir outros trabalhos relacionados, os quais evideciam a importancia do tema.

F. Tahamtani e A. Peyravi (TAHAMTANI; PEYRAVI, 2013) investigaram a equacdo de onda viscoe-
lastica nao linear com termo fonte. Os autores utilizaram a teoria do Potencial para mostrar que
assumindo determinadas restricdes nos dados iniciais e para energia inicial arbitraria, as solucoes
do problema explodem em tempo finito. Ja no artigo dos autores M. Remil e A. Hakem em (REMIL;
HAKEM, 2017) estudaram a equacdo de onda viscoelastica com um termo de atraso constante. Para
a prova da existéncia global das solucoes, eles utilizaram o método de Faedo-Galerkin. Em segundo
lugar, o método do multiplicador é usado para estabelecer uma estimativa de decaimento para a
energia. J4 para uma equacao de onda viscoelastica acoplada com atraso variavel no tempo, F. Z.
Benyoub et.al. (BENYOUB; FERHAT; HAKEM, 2018) combinaram o procedimento de Faedo-Galerkin
com o método da energia para estudarem a existéncia global das solucoes e o comportamento

assintético das solugdes.

Podemos citar outros trabalhos muito relevantes, em que foram estudados sistemas conside-
rando um retardo, sob acdo de uma funcao real. S. Nicaise e C. Pignotti (NICAISE; PIGNOTTI, 2011)
gue estudaram o problema da estabilizacdo por amortecimento interior da equacao de onda com
limite ou retardo variavel no tempo interno, e M. Ferhat (FERHAT, 2016) que estudou o decaimento
de energia das solucdes para a equacao de onda com um termo de retardo variavel no tempo nas

realimentacgoes internas fracamente nao lineares.

Para problemas com retardo em diferentes contextos, citamos (FENG; YANG, 2017; FENG,
2018; THAN; WANG, 2019; YANG; WANG, 2019) como referéncias. Na auséncia do retardo, ou seja,
U2(t) =0, o problema (2.1) é exponencialmente estavel desde que p, () seja constante, veja por
exemplo (CHEN, 1979; CHEN, 1981; KOMORNIK, 1994; LASIECKA; TRIGGIANI, 1987; NAKAO, 1977) e

suas referéncias.

O retardo variando no tempo é a propriedade de um sistema fisico pelo qual a resposta a
uma forca aplicada é retardada em seu efeito e a questao central é que a fonte de atrasos pode
desestabilizar um sistema que é assintoticamente estavel na auséncia de retardos, veja (DATKO;
LAGNESE; POLIS, 1986a). De fato, um retardo arbitrariamente pequeno pode desestabilizar um

sistema que é uniformemente assintoticamente estavel na auséncia deste, a menos que termos de
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controle adicionais forem usados, veja por exemplo (DATKO, 1988; GUESMIA, 2013; XU; YUNG; LI,
2006).

Outros trabalhos relevantes e que valem a pena serem citados foram, por exemplo, o de S.
Nicaise e C. Pignotti (NICAISE; PIGNOTTI, 2008), onde, utilizando o método da energia, os autores
estudando a estabilizacdo da equacio com fronteira ou atraso interno distribuido. J4 C. Raposo et al.
(RAPQOSO et al., 2017a), utilizaram a teoria de semigrupos par provar tanto a solucdo global quando
a estabilidade exponencial para uma equacao de onda com amortecimento friccional e condicao
de retado nao local. Por fim, o problema de transmissao com retardo distribuido foi estudado em
(LIU, 2017), onde foi estabelecida a estabilidade exponencial da solucao através da introducdo de um

funcional de Lyapunov adequado.

Motivado pelos trabalhos citados anteriormente, consideramos uma equacao de onda com
retardo e pesos nao constantes, portanto, neste capitulo faremos uma generalizacao dos trabalhos
anteriores. A parte restante deste capitulo esta organizada da seguinte forma. Na Secao 2.2 introdu-
zimos algumas notacoes e provamos a propriedade dissipativa da energia total do sistema. Na Secao
2.3, para uma abordagem combinando teoria de semigrupos (veja (NAKAO, 1977) e (H, 1973)) com o
método de estimativa de energia provamos a existéncia e unicidade da solucdo. Por fim, na Secao

2.4 apresentamos o resultado da estabilidade exponencial.

2.2 Notacoes e preliminares

Vamos precisar das seguintes hipéteses:

(H1) A funcio de retardo 7 = 7(¢), satisfaz
7€ W>®((0,T]), VYT >0. (2.4)
Existem constantes positivas 7, 71 e d, satisfazendo

O<to<t()<T1, V>0 (2.5)

'(t)<sd<1, Vt>0; (2.6)

(H2) w;: R, —]0,+o0o[ € uma fungio ndo crescente de classe CY(R.) satisfazendo

py ()
(1)

<M, O0<apsp(t), Vt=0, (2.7)

onde a e M; sao constantes tais que M; > 0.

(H3) w2 :Ry — R é uma funcido de classe Cl(R.), que no é necessariamente positiva ou monétona,

de tal forma que
|2(1)] < Bua(0), (2.8)
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s (0)] < Moy (), (2.9)
paraalgum0< f<v1—-de M, >0.

Enunciaremos agora um lemas que serao necessarios mais tarde.

Lema 2.1 (Desigualdade de Sobolev-Poincaré)

Seja g um numero real com 2 < g < +o0. Entao exise uma constante c. = ¢, (10, L[, ) tal que
IWllg<ceWll,, para¥ e Hy(0,LD.

Lema 2.2 ((HARAUX, 1985; KOMORNIK, 1994))
Seja E:R, — R, uma funcdo nao crescente e assuma que exista duas constantes ¢ > —1 e w > 0 tais
que
+00 1
f EM9(t)dt < —E°(0)E(S), se 0<S < +oo.
S w

Entao

E°(0)
E(t)=0Vt= , se —1<o<0,
w|o|

1+
E(1) SE(O)(
1+

E()<E(0)e' ®'Vr=>0, se o =0.

g \o
) Yt=0, seo >0,
ot

Consideremos agora o seguinte procedimento que pode ser encontrado em (NICAISE; PIGNOTTI;

VALEIN, 2011), para obter uma nova variavel (independente)
z(x,p,t) = us(x, t—1(t)p), x€Q,p€]0,1[, > 0. (2.10)
Entao, facilmente se verifica que z satisfaz
T(8)ze(x, 0,0 + (1 -7 (1)) zp(x,0,0) =0, x€Q, p€l0,1[, £>0
e o problema (2.1) pode ser reescrito como

ul’t(xr t)_uxx(xy t)+ul(t)ut(x) t)+u2(t)Z(x, 1)t):0 em Q x (O)OO))

T(t)z:(x, 0,0+ (1 -7 (1)p)zp(x,0,) =0 em Qx(0,1)x (0,00), 1
sujeito as condicoes de fronteira dadas por
u©,n=u(L,t)=0, Vt=0, (2.12)
e condicoes iniciais
ux,0 =up(x), usx,0)=ux) em Q,
(2.13)

z(x,0,0) = uz(x,p) em €Qx(0,1).
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Definimos o funcional de energia relacionado a solucdo do problema (2.11)-(2.13) por

1 2 1 2 ¢(B)T(1) r,
onde
HOEIIO) (2.15)
é uma funcdo nao crescente de classe C'(R,) e & é uma constante positiva tal que
p <é<2- p . (2.16)
1-d 1-d

Nosso primeiro resultado afirma que a energia é uma funcao nao crescente.

Lema 2.3
Seja U(t) = (u(1), us (1), z(t)) uma solucao do problema (2.11)-(2.13). Entao, o funcional de energia

definido por (2.14) satisfaz

d _

dt 2 2V1-d
F(1-1'(¢ vV1i-d
—ulm(é( 0B )u 2L 0l (247)

=<0.

Demonstracdo. Multiplicando (2.11); por u;(x, t), integrando sobre 2 e usando integracio por partes,

temos que
1d
2dt
Agora multiplicando (2.11), por (1) z(x, p, t) e integrando sobre Qx]0, 1[, obtemos

(n el 2 + uxniz(m) + 1 (D152 + pr2 () f z(x,1, Du, dx. (2.18)

r(t)f(t)ff z¢(x, p, 1) z(x, p,t)dpdx——ﬂff -7 (t)p)—(Z(x p,1)*dpdx.

Consequentemente, como
0 0
(1-7"(np) pz 2(x,p) = o —((1-7"(1)p) 22 (x, 0)) + T/ (1) 2% (x, p),

obtemos que

1
i(f(t)m)ff zz(x,p,t)dde):@f(Zz(x,o,t)—zz(x,l,t))dx
dt 2 aJo 2 Jao

!
ROLA0) f 21,0 dx (2.19)
2 Q

! 1
Mff zz(x,p, fdpdx.
2 aJo

Por (2.14), (2.18) e (2.19), obtemos

A por = 5() 6()

€(t)r (1 (T 1
T ||z(x,1,t)||iz(9)+TfoO 2*(x,p,)dpdx (2.20)

- ,ul(t)” u[”iZ(Q) _MZ(I)LZ(-X’ ly t) Uy dx'
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Utilizando a desigualdade de Young, temos que

|,Ug(l')| 2 |,Lt2(t)| v 1-d 1 2 ( )
2m”ut”L2(Q)+f”Z(x, ’t)”LZ(Q)' 2.21

Substituindo (2.21) em (2.20), obtemos

uz(t)f z(x,1, Dusdx <
Q

d HOBRITAG] )
EE(I)S_(ul(t)_T_Zm) ”ut”LZ(Q)
t Nt'(t (n|vV1-d
- (5(2) - f( ); ( ) - |M2 |2 )”Z(xy]-)t)”iz(ﬂ)
! 1
+mff Z2(x,p,)dp dx
2 aJo
¢ B 2
S_ul(t)(l_z_z ,—l_d)”ut”LZ(Q)
F(1-1'(t vi-d
_Iil(t)(f( 21())_.3 > )||z(x,1,t)||i2(m
<0.

Lema 2.4
Seja U(t) = (u(1), us(1),z(1)) uma solucido do problema (2.11)-(2.13). Entdo o funcional de energia

definido por (2.14) satisfaz

1
2
” ul’(x) t)”LZ(Q) < _;EE(t)y

Onde(fzdo(l—%_—z\/f_—d)-

Demonstracao. Pelo Lema 2.3, temos que

= m (1 Ly

w2,
2 2y1-al "P@

dt
E1-T1'(t v1i-d
+ 1 (1) (6( 0 + p )IIZ(X,L t)lliz(m
2 2
> 0.
Por (H1), obtemos
é B 2
OSao (1_54'2— m) ”ul’”LZ(Q)
é B 2
< Hl(t) (]. - 5 + o ,—1 _d) ”ut”LZ(Q)
<—iE(t)
Todt

e assim provamos o Lema. O
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2.3 Solucao global

Para a configuracio do semigrupo, introduzimos U () = (u(¢), v(t), z(t))T, onde v = u;. Assim,

reescrevemos (2.11)-(2.13) como

U= (1U,
- (2.22)
U(0) = Up = (up, uy, uz) ",
onde o operador </ (t) é definido por
1-7'(1) T
'Q{(t)U: (Ur uxx_l'll(t)v_IJZ(t)Z(xyly t)’_T)pr(x)py t) . (2-23)
Introduzimos o espaco de fase
F€ = Hy(Q) x L*(Q) x L*(Qx]0,1])
e o dominio de </ (t) é definido por
D(A(D) ={(u,v,2)" € HIv=12(,0) emQ}, (2.24)
onde
H = H*(Q)n Hy(Q) x Hy (Q) x L*(Q; Hy (10, 1])).
Note que o dominio do operador </ (t) é independente do tempo ¢, i.e.,
D(A (1) =D(«/(0), Vit>0. (2.25)
A é um espaco de Hilbert equipado com o seguinte produto interno
1
(U,U) g :f uxuxdx+f vﬁdx+€(t)r(t)f f zzdpdx, (2.26)
Q Q aJo

paraU=(u,v,2)  eU=(i1,0,2)7.

Uma teoria geral para equacoes do tipo (2.22) foi desenvolvida usando a teoria de semigrupos
(KATO, 1967), (KATO, 1985) e (PAZY, 1983). A maneira mais simples de provar existéncia e unicidade
resulta em mostrar que a terna {(«7, #,Y)}, com «f = {</(t)/t € [0, T}, para alguns T > 0 fixos
e Y = o/(0), forma um sistema de dominio constante (veja (KATO, 1967) e (KATO, 1985)). Mais
precisamente, o proximo teorema, que foi introduzido por Tosio Kato (veja Theorem 1.9 em (KATO,
1967), Theorem 2.13 em (KATO, 1985) ou (MEHMETI, 1972)) nos fornece o seguinte resultado de

existéncia e unicidade:

Teorema 2.5

Assuma que

(i) Y = D(<£(0)) € um subconjunto denso de #;



22 Capitulo 2. Equacdo de ondas com retardo e pesos néo constantes

(i) D(«Z (1) =D(<£(0)), V> 0;

(iii) Para todo t € [0, T], </ (t) gera um semigrupo fortemente continuo sobre .# e a familia
(1) =1{L(t)/t€ [0, T]} é estavel com estabilidade constante C e m independente de ¢ (i.e., o
semigrupo (S;(s))s=o gerado por < (t) satisfaz | S;(s)ull» < Ce"™’||u|l », paratodo u e # e

s=0);

(iv) 0.9/ (t) pertence a L°([0, T], B(Y,#)), que é o espaco de classes de fungdes equivalentes
essencialmente limitadas e fortemente mensuraveis de [0, T] para o conjunto B(Y,.#) de

operadores limitados de Y para /.

Entdo o problema (2.22) tem uma Unica solucio
U e C([0, T1,Y)n C ([0, T, #),

para qualquer dado inicial em Y.

Desta forma, estamos prontos para enunciar e provar o principal resultado desta secao, que é:

Teorema 2.6 (Solucao global)

Para qualquer dado inicial Uy € A existe uma Unica solucao U satisfazendo
U € C([0, +ool, #£)
para o problema (2.22). Além disso, se Uy € D(<#(0)), entao

U € C([0, +oo[, D(<£ (0))) N C ([0, +ool, #).
Demonstracao. Nosso objetivo é entao verificar as suposicdées do Teorema 2.5 para o problema
(2.22).
(i) Primeiramente provaremos que D(</(0)) é denso em A°.

A prova é a mesma do Lema 2.2 de (NICAISE; PIGNOTTI; VALEIN, 2011). Nés a faremos por uma
guestao de completude.

Seja (f, g, h)T ortogonal a todos os elementos de D(<#(0)), a saber

1
0=((u,v,z)T,(f,g,h)T);g:f uxfxdx+f vgdx+€(t)r(t)ff zhdpdx,
Q Q aJo

para todo (u, v,z)T € D(<#(0)).

Primeiro tomamos u=v=0e z€ 2(Qx]0,1[). Como (0,0,z)" € D(<Z(0)), temos que

1
ff zhdpdx=0.
aJo

Como 2(Qx]0,1[) é denso em L?(Qx]0,1]), deduzimos que h = 0. Da mesma forma, tomando

u=z=0eve2(Q), vemos que g =0.
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A condicao de ortogonalidade acima é entao reduzida para
0= fQ uyfedx, Y(u,v,27" eD(A(0).
Restringindo-nos a v = z = 0, obtemos
0= fQ ucfedx, Y(u,0,007 € D(<£(0)).

Verifica-se imediatamente que (1,0,0)” € D(s#(0)) se, e somente se, u € H*(Q) N H, (Q) e como
H?*(Q) n H} (Q) é denso em H, (Q) (equipado com o produto interno @V oy = Jo@xWxdx),

deduzimos que f =0.

Consequentemente,

D(«£(0)) é denso em /. (2.27)

(ii) Foi observado em (2.25).

(iii) Agora, mostramos que o operador </ (t) gera um Cy-semigrupo em # para um ¢ fixo.
Definimos o produto interno dependente do tempo em .#, (que é equivalente ao produto interno
(2.26)), dado por

1
(U, thf ulexdx+f uz?dx+é(t)r(t)ff zzdpdx, (2.28)
Q Q aJo
para qualquer U = (1, v,2)T e U= (i1, 7,2)T em H, onde
HOEITO) (2.29)
e £ é uma constante positiva tal que
P <é<2- P . (2.30)
1-d 1-d

Calcularemos (<f () U, U), para um t fixado. Tomando U = (i, v,z) ' € D(<#(¢)), entdo
<£¢(t)U,U>t:Lvxuxdx+fg(uxx—ul(t)v—uz(t)z(-,l))vdx
1
—f(t)fgfo (1-7'(0)p) 2y (x, p)2(x, p) dp dx.
Integrando por partes, obtemos
(O, U); == OV, 2(0) [ 26 Do dx
Q
1 0
—ff (1-7'(0p) =—2*(x, p) dpdx.
QJo op

Sendo

— i 2 _i e 2 / 2
(1-7"(p) 3p° (x,p) = 5 (1-7'p)z°x, ) +T' () 2" (x, p),
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temos que
1 0 1
f(I—T’(t)p)%zz(x,p)dp:(I—T’(t))zz(x,l)—zz(x,O)+T'(L‘)f z%(x, p) dp.
0 0

Assim,

(A (OU, Uy =— (D VlI%, o — 2(1) Z(x,l)vdx+QIIZ( ,0)[1%,
12(Q) L=(Q)

o (1-7'(0) T (1)

Portanto, por (2.20) e (2.21), deduzimos que

3 B 2
(d(f)U,UhS_,ul(t)(l—E—z\/T_d) ||V||Lz(Q)
F(1-1'(¢t Vi-d
_Hl(t)(é( ZT())_ﬁ > )|| (6,1, D720

6(t)|r (0] f
270 (t)f z%(x,p)dp dx.

Por (H3) e (2.29), temos que

¢ P 2
(A (OU,U), < - (0) (1 - zm) V12,

F1—-1/(¢ V1-d
—,ul(t)(gt( 21( ) —'6 > )II (x,1, t)IILz(Q)
+K(t)<U)U>t)
onde
1+1/(1)?
k(1) =
27(1)
Por (2.17), obtemos
(LU, U)—x()U,U) <0, (2.31)

o que significa que o operador o (1) = of (1) —x(t)I é dissipativo (nos proximos passos usaremos </

como um pivo para entdo recuperar as propriedades pretendidas de «7).

Agora, mostremos que o operador A1 — </ (t) é sobrejetivo para ¢ > 0 fixado e A > 0. Para este
fim, seja F = (f1, f>, )1 € #, buscamos U = (u,v,2z)T € D(«# (1)) solucdo de

A - () U=F

gue esta verificando o seguinte sistema de equacoes

Au—-v = fi, (2.32)

AV— Uy + 1 (Ov+p2(z(x,1) = fo, (2.33)
1-1'(t)p

+sz fé (234)
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Suponha que encontramos u com a regularidade apropriada. Portanto, de (2.32), temos que

v=Au-fi.

(2.35)

Eclaroque ve H(} (Q). Além disso, por (2.34), podemos encontrar z. Seguindo a mesma abordagem

de (NICAISE; PIGNOTTI, 2006), obtemos que
o
2(0,0) = v "0 4 r(0e 00 [ fi(x, 9”0 ds
0

é solucdo de (2.34), se 7/(1) =0, onde 94, t) = Al1(1), €

z(x,p) = v(x)et PP + e((P’”fp Me—as,t) ds,
o 1-—sT1/(s)

é solucdo de (2.34), caso contrario, onde {(¢,t) = AL (1 - ¢7/(1)), sendo gue ambas as solucoes

/(1)
satisfazem

z(x,0) = v(x), para xeQ.

Por (2.35), obtemos
0
z(x,p) = Au(x)e 2P0 — £ (x, p)e D +T(t)e_’9(p’”f f3(x, e ds,
0
set/()=0, e

206, p) = Au(x) e’ D — i (x, )£ @D +ec(p,t)fp TNLXS) s g
o 1-sT1/(s)

caso contrario.

Em particular, se /() = 0 e por (2.37), temos que
1
z(x,1) = Au(x)e 20D - filx, e 900 4 r(t)e_ﬂ(l’t)f f3(x, e’ g,
0
e se 7'(t) #0 e por (2.38), temos que

1
(1) f3(x,5) _
z2(x,1) = Au(x) et D - fi(x, l)eC(l'I)+e((1’t)f LOHICD) ) o=t g
o 1—sT7'(s)

Substituindo (2.35) e z(x,1) em (2.33), obtemos
au - uxx = g,

onde
a:= A2+ Ay () + Ao (£ Ny,
g:= o+ Afi+ui1(0) fi + p2() Ny,

e LD e /() =0,
Nl':
LD se /(1) #£0,

N {—fl(x,l)e‘ﬁ(l'”+T(L‘)e‘19“’” [ f(x,9e?0ds, se 7'(1) =0,
2=

—filx, 1)eb D 4 o) [ HOLED p=0s g5, se 7/(1) £0.

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)
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Resolver a equacdo (2.41) é equivalente a encontrar u € H*(Q) N H(} (Q) tal que

fauft+ uxﬂx:fgﬂdx, (2.43)
Q Q

para todo i € Hy(€Q).
Consequentemente, a equacao (2.43) é equivalente ao problema
Y (u, i) = L(@), (2.44)
onde a forma bilinear
Y:HNQ) x H Q) — R

e a forma linear
L:H}(Q) —R

sao definidas por
Y(u,ﬂ):af uzldx+f Uyl dx e L(ﬂ):f gl dx.
Q Q Q

Facilmente verificamos que Y é continua e coerciva, e L é continua. Dai, aplicando o Teorema de

Lax-Milgram, deduzimos que, para todo i € Hé (Q), o problema (2.44) admite Unica solucdo
ue Hy(Q).

Aplicando a regularidade eliptica classica, segue de (2.43) que
ue H*(Q).

Portanto, o operador AI — o/ (t) é sobrejetivo paratodo A >0 e ¢ > 0. Dai, como x(t) > 0, isso prova
que
A - (1) = (A+x(8) I —<(t) é sobrejetiva, (2.45)

paratodoA>0e t>0.

Para completar a prova de (iii), € suficiente mostrar que

DIl < 7=l

< , Yt,se[0,T], (2.46)
DIl

onde ® = (u, v,2)T, ¢ € uma constante positiva e | - ||; € a norma associada ao produto interno (2.28).
Para todo t,s € [0, T], temos que

£

[01% ~ 1@l2e7 ™" = (1= 20" ™) (Jucl, ) + VI
. 1
+(6(t)r(t)—é(s)r(s)e%”_sl)fgfo Z2(x,p, ) dp dx.

E claroque 1 — e%”_sl < 0. Agora, vamos provar que &(8)T(t) — E(S)T(s)e%”_sl <0 para algum ¢ >0.

Para isso, de (2.4) e pelo Teorema do Valor Médio, temos que

(D=1 +T'(r)(t-9),
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para algum r €]s, t[. Como ¢ € uma funcao nao crescente e £ > 0, segue que

EMT() <EST(H+EOT (N(E-9),

o que implica
HOLIORN L]
1+

< |t —s].
E(s)T(s) 7(5)
Usando (2.4) e o fato que 7’ é limitado, deduzimos que
JAULICISURLI PN T

ETls) 1o

o que prova (2.46) e, portanto, (iii) segue.

(iv) Note que, por (H1), temos que

(1" (1) _T’(t)\/1+r’(t)2
21(0)V1+1'(1)2 21(1)*

é limitado em [0, T'] para todo T > 0. Além disso,

K'(£) =

d "Wrp -7 O Wp-1) '
com Tﬂ(mmpz;g?(T,mp_1) limitado sobre [0, T] por (H1), e considerando (H2) e (H3), temos que
d -
%.ﬁf(ﬂ € L°([0, T1, B(D(£(0)), #)), (2.47)

onde L°([0, T1, B(D(<£(0)), #)) é o espaco das classes de equivaléncia de funcdes essencialmente
limitadas e fortemente mensuraveis de [0, T] para B(D(</(0)), #).

Entdo (2.31), (2.45) e (2.46) implicam que a familia </ = {</(1)/ ¢ € [0, T1} é uma familia de
geradores estaveis em # com constantes de estabilidade independentes de t, pela Proposicao 1.1
em (KATO, 1967). Portanto, as afirmacoes (i) — (iv) do Teorema 2.5 sao verificadas por (2.25), (2.27),
(2.46), (2.31), (2.47) e (2.45), e assim, o problema

U, =< (0)U,
{ 0= 1) (2.48)

J(0) = Up = (o, ur, fo-, =, T(0)) "
tem Unica solucdo U € C ([0, +ool, D(<£(0))) N C ([0, +ool, #) para Uy € D(<£(0)). A solucio pedida
de (2.22) é entao dada por
U(D) = el *9dsgy(p),
pois
U, (1) = k() e *O9 G (p) + e O s, (p)

= el Ods (xe(1) + 7 () T (1)

= of (el OO (1)

= (NU(1),

o que conclui a prova. O
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2.4 Comportamento assintético

Nesta secdo vamos investivar o comportamento assintético do problema (2.1). O resultado da

estabilidade sera obtido usando o Lema 2.2.

Teorema 2.7 (Decaimento exponencial)
Seja (ug, u1, fo(,—,7(0))) € Hy (Q) x L*(Q) x L*(Qx]0,1[). Assumindo que as hip6teses (H1), (H2) e

(2.4)-(2.6) sao validas. Entao o problema (2.1) admite Gnica solucao
u € C([0, +ool, Hy (V) N C*([0, +ool, L*(2)),

z € C([0, +oo[, L*(€2)x]0, 1.

Além disso, para constantes positivas ¢ e a, obtemos a seguinte propriedade de decaimento:

E(t) <cE0)e %!, VYt=0.

Demonstracgo. De agora em diante, denotamos por c¢ varias constantes positivas que podem ser

diferentes em diferentes ocorréncias.

Dado 0 < S < T < oo, comecamos multiplicando a primeira equacao de (2.11) por uE9Y e entdo

integrando sobre (S, T) x Q, obtemos

T
f E"f u(Urr — Ux + 1 (D g + p2(0)z2(x,1,1)) dxdt =0.
s Q

Note que

2
Ugeh = (UpU) p — U

Dai, usando integracao por partes e as condicoes de fronteira, temos que

T

T
0:[5"@)[ uu;dx —f qE"_l(t)E’(t)f uuydxdt
Q S Q

S

T T
2 2
- [ Bl g de+ [ B0, g dr (2.49)
T T
+f E”’(t)f ul(t)uutdxdt+f Eq(t)f w2 (Huz(x,1,t)dxdt.
s Q S Q

Analogamente, multiplicando a segunda equacao de (2.11) por E9¢(t)e2PT (0 z(x, p,t) e entao inte-

grando sobre Q x (0,1) x (S, T), vemos que

T 1
Ozf ff Eq(t)f(t)e‘Zpr(t)z(X,p, 1) (T(t)zt(x,p’ t)"'(l—PT’(t))zp(x,p, If)) dpdxdt
s JaJo
1 1 pT 5
=—fff EI0éme 2" L 2(x 0,0 drdp dx
2Jado Js ot

T 1
+1f E"(t)f(t)ff e'zp’m(l—pr'(t))izz(x,p, Hdpdxdt.
2Js aJo op
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Usando integracao por partes e as condicoes de fronteira, segue que

f(t)T(t)Eq(t)ff 2070 22y o £) dp dx
2 aJo

T
_%fs qEq‘l(t)E'(t)f(t)T(l‘)foO 2T 22 (x,p, ) dpdxdt

T
0=

S

T
—%f c/E”(t)f’(t)r(t)ff 2010 22 (x,0,t)dpdxdt (2.50)
S QJO
T
+%f Eq(z)f(r)f [e72"W (1-1'(1) 2%(x, 1, 1) — 2°(x,0,1)| dxdt
S Q
T
+f Eq(t)f(t)r(t)ff ~2t0 22 (x, p, ) dp dxdt.
S QJo

Como p; € uma fungao nao crescente de classe C; (R), sua derivada é nao positiva, o que implica

que &'(1) < 0. Entao temos o seguinte resultado

T
f qE"(t)é’(t)r(t)ff ~210 22 (x,p,0)dpdxdt <0. (2.51)
S QJ0o

Além disso, como

T
—%f Eq(t)z(t)f e 2T (1-7'(1) 2%(x, 1, ) dxdt <0, (2.52)
S Q

entao, por (2.50), (2.51) e (2.52), temos que
T
f Eq(t)f(t)r(t)ff ~210 22 (x,p, ) dpdxdt
S

[é(t)rmm( 1 f f 210 2 (x, p, 1) dp dx
S (2.53)

+§f gET () E (t)é(t)r(t)ff ~2t 02 dpdxdt
S

T

1
——f Eq(t)cf(t)f Z%(x,0,0)dxdt.
2Js Q
Usando a definicdo do funcional de energia (2.14), (2.49) e (2.53), segue que
T
}/of Eq+1 dt<-
S
T
+qf Eq_l(t)E'(t)f uu;dxdt
S Q

T
+qf —(’c(t)r(t)E"'l(t)E'(t)ff 2T 22 (x,p, ) dpdxdt
QJo

T
+2f Eq(t)llutlle(Q)dt—fS Eq(t)fQ,ul(t)uutdxdt

T T

[éwr

Eq(t)f uu;dx
Q

E"(t)ff ~2r1022(x,0,0)dp dx
aJo

N S

(2.54)

T
—f Eq(t)f Uz (Huz(x,1,t)dxdt
S Q
T
+1f €(t)E"(t)e‘2P””f Z%(x,0, ) dx dt,
2 Js Q

onde yo = 2min{l,e 271},
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Usando as desigualdades de Young e Sobolev-Poincaré, e o Lema 2.3, obtemos que

T

- [E"(t)[ uu;dx
Q

sE"(S)f u(x,S)ut(x,S)dx—E"(T)f u(x, Du;(x, T)dx
S Q Q

< cETTL(S).

Agora, observe que

[éwT

s f(S)T(S)Eq(S)ff 2078 2(x, p, )
2 aJo

1
scE‘f(S)f(S)r(S)ff Z?(x,p,S) dpdx
QJo

1
Eq(t)ff dpdxe " z%(x,p, ) dp dx
alo

< cETL(S).
Por (2.17), temos que
T T
f E"_l(t)E’(t)f uutdde‘SCf (—E'()E9(t)dt < cETL(S).
S Q S
Analogamente,
g NT(t
f B (B (n 2T )ff 02, p, ydpdxdt < cETT(S),
S 2 aJo
Pelo Lema 2.4, deduzimos que
T
f ET@)llul7zq, dt —cf EY(NE (1 dt < cET(S).
S S
Agora, obtemos que

T
s,ul(O)U E"(t)f uutdxdt‘
s Q

T
U E"(t)[ i (HDuusdxdt
S Q

T T
sc(sl)j E"(t)f u?dxdwglf E"(t)f utdxdt
S Q S Q

- T (2.55)
< c(£1)f Eq(t)(—E,(t))dt+81f EYE(D)dt
S S
T
< c(e)) ETM(S) +glf ETY(pdt
S
e por (H2), segue que
T T
Eq(t)f uz2(Duz(x,1,0)dxdr 5,6,u1(0)U Eq(t)f wz(x,l,t)dxdt‘
S Q S Q (2.56)

T
< c(eg)Eq+1(S)+£2f E* Yt dt.
S

Finalmente,

1
Efs Eq(t)«f(t)f 22(x,0,)dxdt < 100 )f E1DO | urllfr g dt

< cf E1(0)(-E' (1)) dt < cEI*(S).
S
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Escolhendo ¢&; e &, suficientemente pequeno, deduzimos de (2.55) e (2.56) que
T 1
f ETl dr < —ET*L(S).
S Y
Como E(S) < E(0) para § =0, temos que
r 1
f ET Y dt < —E(0)EY(S).
S Y
Escolhendo g = 0, concluimos do Lema 2.2 que

E(r) < E(0)e' 7.

Isso encerra a prova do teorema.
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Capitulo 3

Estabilizacao de solos elasticos porosos incha-
dos com saturacao de fluido, retardo e pesos

nao constantes

3.1 Introducao

Materiais porosos consistem em uma estrutura composta por um ou mais componentes solidos
capazes de fornecer uma resposta mensuravel em macroescala, dependendo das interacoes de
diferentes fases e estruturas em microescala. Por esta razdo, varias teorias de como o comportamento

macroscépico emerge das interacdes microscopicas para modelar e quantificar a resposta do material.

Teorias distintas que descrevem a fisica de sistemas multicomponentes sdao estudados por
uma linha de pesquisa chamada teoria da mistura. A teoria da mistura pode ser usada para modelar
uma ampla gama de diferentes materiais porosos. A figura abaixo ilustra processo de inchamento,
onde as camadas de argila preenchidas por cations metalicos entram em contato com moléculas de
agua, promovendo inchaco da estrutura.. Portanto, é interessante buscar abordagens e diferentes
métodos para descrever a cinematica e as leis do equilibrio, podemos citar os trabalhos de R.J. Atkin
e R.E. Craine (ATKIN; CRAINE, 1976), A. Bedford e D. Drumheller (BEDFORD; DRUMHELLER, 1983) e V.
Klika (KLIKA, 2013).

A.C. Eringen (ERINGEN, 1994) usou a teoria da mistura para modelar o problema do inchamento

do solo, mais precisamente, ele considerou o sistema dado por

plif +a/IVv-uf + oIV W+ (@f +yHVT+E T @/ —a%) - pl# =0,

psu+0/Vv-ul — () —ag)VT - A+ @ VV-u —uv-vu® — & @ —u%) - psfs =0, (3.1)
fael o _ef o = Dy Lo _
a1T+(a +¢& /To)v u’ + (a’o ¢ /T())V u TOV T To 0,

onde os sobrescritos f e s denotam o fluido e o sélido elastico, respectivamente. Consequentemente,
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Figura 1 - O processo de inchamento da argila. Crédito para P. T. P. Aum.

u/ e u® representam os deslocamentos do fluido e do material sélido respectivamente e T é a

mudanca de temperatura para uma temperatura ambiente Ty. As funcdes f/, f° e h representam

f
0

&IT > 0 sdo as constantes constitutivas, ag >0, a1 >0, a/ >0, ¢/ >0 e y/ > 0 si0 as constantes do

as forcas externas, p; e p; sao as densidades de cada constituinte, 1 >0, u >0, of <0,0/f<0e
material e K a constante de condutividade térmica. E importante considerar a relacio K/ Ty =0 e
KT 1Ty = (yf + &7 1Tp)% 4.

O estudo do comportamento de solos argilosos em expansao é de suma importancia em muitos
aspectos da vida cotidiana, pois sdo responsaveis por muitas reacoes e processos. Por exemplo,
as argilas compactadas desempenham um papel importante na prevencdao do movimento da agua
através de buracos e rachaduras. No contexto da producao de petréleo e gas, as lamas de perfu-
racdo desempenham um papel importante (KARABOMI et al., 1996; WILCOX, 1990). Segundo W.
Wray (WRAY, 1995), a expansao das argilas também desempenha um papel critico na construcao
de fundacoes, pontes e rodovias, pois os solos expansivos variam em volume conforme o teor de
umidade aumenta ou diminui. Desta forma, um modelo preciso, capaz de prever o inchamento de
argilas sera de grande utilidade na engenharia e ciéncia do solo. Com base no importante trabalho
de A.C. Eringen (ERINGEN, 1994), muitos autores (QUINTANILLA, 2002a; WANG; GUO, 2006; QUIN-
TANILLA, 2002b; QUINTANILLA, 2004; BOFILL; QUINTANILLA, 2003) estudaram o comportamento de
problemas relacionados ao inchamento do solo. Por exemplo, R. Quintanilla considerou o sistema
unidimensional na teoria isotérmica linear de solos elasticos porosos inchados dado por

PzZtt— Q1 Zxx — A2 Uxx + 6 (2 — Up) = Uz Zxxt = 0,

(3.2)
Pulltr — Plyx — A2Zxx —§ (2t — Ur) =0,

onde as variaveis dependentes z = z(x, 1) e u = u(x, t) representam o deslocamento do fluido e
do material solido elastico, respectivamente. As constantes p, e p, sao as densidades de cada
constituinte e as constantes a,;, ay e u representam as constantes constitutivas da teoria e eles
satisfazem a% < a; . Nesse trabalho, o autor provou a estabilidade exponencial usando o método da
energia e mostrou que os termos dissipativos +¢(z;— 1) € Uz Zxxs, cOM E >0 e p, > 0 sao suficientes
para estabelecer o resultado. Por outro lado, J-M. Wang e B-Z. Guo (WANG; GUO, 2006) consideraram

um problema de inchamento dos solos elasticos porosos unidimensionais com amortecimento na
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equacao do deslocamento do fluido

P22t — A1 Zxx — ApUxx — PZY(X) 2, =0,
Pulltr — UlUxx — A22xx =0,
€ provou que o sistema é exponencialmente estavel usando o método espectral.

Recentemente, A. Ramos et al. (RAMOS et al., 2020) consideraram o sistema fracamente
dissipativo
PzZtr— A1 Zxx — AoUyxx = O,
(3.4)
Pullir — 3Uyyx — ApZxx +Y (1) g(U) = 0,
com amortecimento nao linear. Eles estabeleceram uma taxa de decaimento exponencial, usando um
método multiplicador e algumas propriedades de funcdes convexas sem impor nenhuma suposicao
restritiva de crescimento préximo a origem no termo de amortecimento, desde que as velocidades

de onda do sistema sejam iguais.

Na modelagem de problemas envolvendo inchamento de solos argilosos, é de extrema impor-
tancia ter uma descricdo adequada do comportamento microscopico da dgua absorvida (agua entre
as plaquetas). Sabemos que o processo de consolidacido geralmente envolve duas etapas, que sdo
as diferentes taxas de compressao, a primaria e a secundaria. Na fase primaria, a pressao da fase
de volume é gradualmente transferida para o esforco efetivo, enquanto na compressao secundaria
ocorre uma deformacao continua depois que a 4gua em massa é substancialmente drenada. Sendo

assim, ambos podem ocorrer simultaneamente.

Devido a fatores intrinsecos que caracterizam o comportamento viscoso a fluéncia da estrutura
argilosa no estagio secundario, ainda ndo ha um entendimento completo dos mecanismos subjacen-
tes a este fendmeno. No entanto, A. Sridharan e G.V. Rao (SRIDHARAN; RAO, 1982) sugeriram que a
compressao secundaria esta relacionada a deformacao retardada da particula de argila apds a agua
bruta ser drenada dos poros na estrutura primaria (T. Hueckel (HUECKEL, 1992)). Esta deformacao
secundaria surge devido ao atraso na drenagem da agua absorvida em relacdo ao fluxo da fase de
massa. Desta forma, é natural que queiramos estudar o comportamento dos sistemas de dilatacdo

do solo considerando os efeitos do atraso no deslocamento do fluido.

Em trabalho recente, A. Ramos et al. (RAMOS et al., 2021), consideraram o problema de
inchamento em solos elasticos porosos com saturacdo de fluido, amortecimento viscoso e um
retardo com tempo de atraso constante, dado por

PzZtt — A1Zxx — GplUxx + 812t + 6224 (X, E—T) = 0,
(3.5)

Pullr — A3Uxx — A2Zxx = 0.
Eles estudaram a solucdo global do problema com base na teoria dos semigrupos e mostraram que a
energia associada ao sistema é dissipativa e estabeleceram a estabilidade do sistema exponencial-

mente. No contexto de modelos que consistem em equacodes diferenciais parciais, quando inserimos
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termos de retroalimentacao de atraso em modelos estaveis, eles podem se tornar instaveis (DATKO;
LAGNESE; POLIS, 1986b; DATKO, 1988; NICAISE; PIGNOTTI, 2006). Portanto, para esses tipos de
modelos (formados por equacodes diferenciais parciais) devemos ter o cuidado de analisar cada caso.

Vejamos a seguir, alguns trabalhos relacionados, importantes por si s6 e que enriquecem a teoria.

S. Nicaise et al. em (NICAISE; PIGNOTTI; VALEIN, 2011), estudaram a seguinte equacao de onda
com atraso variavel no tempo de limite
uy—Au=0 em Qx(0,00),

u=0 em TIpx(0,00),

ou
a—vz—ylut—ygut(x,t—r(t)):o em TI'yx(0,00), (3.6)

ulx,0)=ug(x) e u(x0)=u(x) em
ur(x, t=7(0)) = folx,t—7(0) em TI'yx(0,7(0),
onde Q < R" é dominio limitado e suave, u; e u, sdo constantes positivas, v(x) representam o vetor
normal da unidade externa ao ponto xeT' e g—z é aderivadanormal, ' =TpuTI'y é o limite de Q.
No trabalho, considerou-se
TEW>®([0,T]), VYT>0, (3.7)

0<To<T(H)<T, Vit>0, (3.8)

para algumas constantes 7 e T e existe d > 0 tal que

M2 <V 1- d,u1 (39)
com
'()<d<1, Vt>0. (3.10)

Com essas suposicoes, os autores mostraram que o sistema é exponencialmente estavel.

M. Kirane et al. em (KIRANE; SAID-HOUARI; ANWAR, 2011), consideraram o seguinte modelo

de viga Timoshenko unidimensional com retardo variavel 7(¢) na equacao do angulo de rotacao

P19 —K(@x+y¥)y=0 em (0,1) x (0,00), (311
P2V it —bWxx +K(@Px+W) + W+ oy (x, t—7(6)=0 em (0,1) x (0,00), '

onde p1, p2, k¥ € b sdao constantes positivas relacionadas as propriedades fisicas do feixe, a funcao
de atraso 7(¢) satisfaz (3.7), (3.8) e (3.10). Os autores mostraram que se (3.9) e p1/x = p2/b forem
validos, entdo o sistema é exponencialmente estavel.
A. Benaissa et al. em (BENAISSA; BENGUESSOUM; MESSAOUDI, 2014) consideraram a seguinte
equacao de onda com retardo e pesos de amortecimento dependendo do tempo
Urr—Au+p (Dus+ pe(Du(x,t—17)=0 em Qx(0,00),
u=0 em T x(0,00),
(3.12)

u(x,0)=up(x) e ux,0=u(x) em Q

ur(x, t—=1(0) = folx,t-7(0) em Qx(0,7(0),
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onde Q < R é um dominio limitado com limite T'. Ao contrario de trabalhos anteriores, os amorteci-
mentos y; e u, dependem do tempo ¢, porém, o tempo de retardo 7 é constante. Sob suposi¢oes
apropriadas sobre os pesos do amortecimento u; e u,, os autores obtiveram o decaimento expo-
nencial da energia do sistema. J4 V. Barros et al. em (BARROS; NONATO; RAPOSO, 2020) estudaram
o problema (3.12) com Q = (0,L) c R e 7 = 7(¢) a funcdo dependente do tempo t. Sob premissas
apropriadas para p; (t) e uo(t) e considerando (3.7), (3.8) e (3.10) os autores mostraram que a energia
do sistema decai exponencialmente. Nossa intencao ao citar os trés ultimos trabalhos foi mostrar
situacoes em que o feedback de atraso dependente do tempo aparece 7 = 7(f) bem como mostrar
situacoes em que o peso do amortecimento pode variar, o que torna o problema mais complicado,
sem dlvidas, mais atraente e desafiador. Existem iniimeros estudos sobre a estabilidade exponencial
de sistemas lineares considerando o caso em que o atraso é constante (APALARA, 2016; FENG;
PELICER, 2017; KIRANE; SAID-HOUARI, 2011; NICAISE; PIGNOTTI, 2006; NICAISE; PIGNOTTI, 2011;
RAPOSO; APALARA; RIBEIRO, 2018; RAPQOSO et al., 2013; SAID-HOUARI; LASKRI, 2010; XU; YUNG;
LI, 2006). Existem também varios estudos considerando modelos n3o lineares com atraso onde a
existéncia de atratores é investigada, entre eles, sistemas de Timoshenko (SANTOS et al., 2020; FENG;
YANG, 2017; RAMOS et al., 2019; YANG; ZHANG; LU, 2021), sistemas poroelasticos (SANTOS et al.,
1920) e ponte suspensa (PARK, 2018; WANG; MA, 2019). Com base no trabalho mencionado acima
sobre o problema de inchamento dos solos elasticos porosos unidimensionais e nas referéncias
(BARROS; NONATO; RAPOSO, 2020; NONATO; SANTOS; RAPOSO, 2022; NONATO; RAPOSO; FENG,

2022), projetamos e propomos estudar a estabilidade exponencial para o seguinte sistema

PzZtr— A1Zxx — ApUxx + U1 (D2 + P2 (D ze(x,t—7()) =0 em (0,L) x (0,00),

(3.13)
puutt_a3uxx_azzxx: 0 em (O)L) X (0,00),
com condicOes de fronteira dadas por
Z(O) t) = Zx(L, t) = u(Or t) = ux(L) t) = O) V r= 07 (314)
e condicdes iniciais
z2(x,0) =zo(x), 2¢(x,0)=21(x), ulx,0)=uo(x), ui(x,0=u(x), x€(0,L), (3.15)
3.15

z(x,—s1(0)) = 22(x,8), (x,8)€(0,L) x(0,1),
onde zy, z1, 22, Ug, U1 sao funcdes conhecidas pertencentes a espacos funcionais apropriados. Em
(3.13), estamos admitindo que o retardo esta sendo considerado no deslocamento do fluido, isso nos
parece muito natural, pois segundo A. Sridharan e G.V. Rao (SRIDHARAN; RAO, 1982), a compressdo da
deformacao secundaria ocorre de alguma forma devido ao atraso na drenagem da agua absorvida em
relacdo ao fluxo da fase do volume. Neste trabalho, obtemos o resultado do decaimento exponencial
sem impor uma condicao as velocidades de onda a;/p, = a»/p, do sistema. Este € um resultado
surpreendente e inesperado em comparacdo com o sistema Timoshenko, sistemas elasticos porosos

e outros sistemas com amortecimentos semelhantes.

A parte restante deste capitulo esta organizado da seguinte forma: na Secao 3.2, estipulamos

as hipoteses para as funcoes presentes em (3.13) bem como, através de uma mudanca de variavel,
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obteremos um sistema equivalente a (3.13). Na Secao 3.3, usando a teoria de semigrupo de opera-
dores lineares encontrada em (KATO, 2011), a questdo da existéncia, unicidade e regularidade da
solucdo sera abordada. Por fim, na Secao 3.4, obteremos o principal resultado deste trabalho, que é

a prova do decaimento exponencial para o sistema (3.13).

3.2 Preliminares

Vamos considerar as seguintes hipoteses:

(A1) Afuncio de retardo T = 7(1), satisfaz
Te W2®([0,T]), VT>0. (3.16)
Existem constantes positivas 7, 71 € d, satisfazendo

O<to<t()<T;, V>0 (3.17)

'(H<sd<l, VYt>0; (3.18)
(A2) p;:R4 — (0,+00) € uma funcdo nao crescente da classe Cl(R,). Além disso, existem constan-
tes up e M > 0, tais que

()
(1)

=M, O<po<pi(f), V=0 (3.19)

(A3) p2:Ry — R éuma funcio de classe C!(R,), o que ndo é necessariamente positiva ou moné-

tona. Além disso, existem constantes M> >0e d,com 0< 6 < V1 -—d, tais que

|2 ()] < o (1) (3.20)

15 ()] < Moy (2). (3.21)

Como foi feito em (NICAISE; PIGNOTTI; VALEIN, 2011), introduzimos uma nova variavel (inde-
pendente) dada por

nx,y0=z/(x,t—1(0)y), (xy1e(0L)x(0,1)x(0,00). (3.22)
Verifica-se facilmente que z satisfaz

(O, 3,0+ Q-1 (YN, (x, 1) =0. (3.23)
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Portanto, usando (3.22) e (3.23) podemos reescrever (3.13) da seguinte forma

PzZrr — A1 Zxx — AUy + U1 ()2 + u2()n(x,1,6) =0 em (0,L) x (0,00),
Pullts— A3Uyxx — A2Zxx =0 em (0,L) x (0,00), (3.24)

(0N +1-7' ()N, =0 em (0,L)x(0,1) x (0,00),
sujeito a condicoes de fronteira dadas por
z(0,8) = u(0,8) =z (L, 1) = uy(L,£) =0 (3.25)
e condicdes iniciais

z2(x,0) = z9(x), z:(x,0)=2z1(x), u(x,0) =up(x), wuix,0=ux) em (0,L), (3.26)
3.2
n(x,y,0)=2zx(x,y) em (0,L) x(0,1).

3.3 Solucao global

Nesta secdo, usando a teoria de semigrupos de operadores lineares encontrada em (KATO,
2011), um resultado de existéncia, unicidade e regularidade sera obtido para o problema (3.24)-(3.26).
Procedimentos semelhantes sdo encontrados no capitulo anterior ou em diversos trabalhos, como
(KIRANE; SAID-HOUARI; ANWAR, 2011; LIU; CHEN, 2017; NICAISE; PIGNOTTI; VALEIN, 2011).

Em primeiro lugar, considere os seguintes espacos

H.(0,L)={p:¢pe H'(0,L), p(0) =0} (3.27)

A0 =H,(0,L) x L>(0,L) x H,(0,L) x L>(0, L) x L>((0, L) (0, 1)). (3.28)

Definimos em # o seguinte produto interno

L L L
(U,U);f:pzf wﬁzdx+puf v'z7dx+(a1—a§/a3)f ZeZedx
0 0 0
L( a @ L ol (3.29)
+ ——zy+Vazguy || —Z, + Vasii dx+ff ndydx,
fo(\/a—gx\/_?ux)(\/a—gx\/_?ux) o), My

para qualquer U = (z, w, u, v,1), U=z w,i, v,1) em A, onde w=z;e v=uy.

Introduzindo U (1) = (z(1), w(t), u(t), v(1),n() T e Uy = (20, 21, to, U1, 22) T, 0 sistema (3.24)-

(3.26) pode ser escrito como o seguinte problema abstrato de valor inicial em #

Uity = LU, t>0,
(3.30)
U(0) Uy,
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onde o operador &/ (1) : D(</(t)) € A — S é dado por

Z w
w p7 @1 zxx + Gruxy — 1 (D w — p2(HN(-, 1))
A u |= v , (3.31)
v 0 (A3Uy + A2 Z55)
1-7'(n)y
n ~2m Ny

com

D(of (1) = {(z, w, U, v,1) € 7, z,u€ H*(0,L) N H,(0,L), w,v € H((0,L), zx(L) = u(L) =0,

(3.32)
ne L2(0,1;Hy 0, 1)), n(,0) = w}.
Note que D(«/ (1)) é independente de ¢, isto é,
D(L (1) = D(«£(0)), VYt>0. (3.33)

Como foi feito no capitulo anterior, usaremos o teorema introduzido por Tosio Kato para obter

o resultado de existéncia e unicidade:
Teorema 3.1
Assuma que
(i) Y=D(«£(0) édenso em ./;
(i) D(«Z (1) =D(<£(0)), V> 0;

(iii) Para todo t€ [0, T], «/(t) gera um semigrupo fortemente continuo em # e a familia of =
{/(1); t€0,T]} é estavel com estabilidade constantes C e m independentes de ¢ (ou seja, o
semigrupo (S;(s))s=o gerado por o7 (1) satisfaz ||S;(s) W | » < Ce™*||W|| », para todo W € A
es=0);

(iv) 0.9/ (1) pertence a L°([0, T1, B(Y,#)), que é o espaco das equivalente classes de fungdes
essencialmente limitadas e fortemente mensuraveis de [0, T] para o conjunto B(Y, #°) de

operadores limitados de Y para /.

Ent3o o problema (3.30) tem uma Unica solucio
Ue c([o, T);Y)ncl([o, T);Jf), (3.34)

para qualquer dado inicialem Y.

Desta forma, estamos prontos para enunciar e provar o principal resultado desta secao, que é:

Teorema 3.2 (Solucao global)

Para qualquer Uy € D(<#(0)), existe uma Unica solucdo U de (3.30) que satisfaz

Ue c([o, +oo);D(.sz¢(O)))ﬂCl([0,+oo);J€). (3.35)
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Demonstracdo. Devemos mostrar que </ (f) atende as condi¢des do Teorema 3.1. Na verdade,

(i) Essa condicdo pode ser comprovada usando argumentos analogos feitos no capitulo anterior
ou aos encontrados em (KIRANE; SAID-HOUARI; ANWAR, 2011; LIU; CHEN, 2017; NICAISE; PIGNOTTI,
2011; NICAISE; PIGNOTTI; VALEIN, 2011).

(i) Foi observado em (3.33).

(iiif) Para mostrar que o operador </ (t) gera um semigrupo Cy em #, dado ¢, introduzimos o

produto interno dependente do tempo em # (este produto interno é equivalente a (3.29))

L L L
(u,y, = pzf wzi'/dx+puf vﬁdx+(a1—a§/a3)f ZeZedx
0 0 0

L( g @ L ol (3.36)
+f0 (\/_a—gzx+\/a_3ux) (\/_a—32x+\/a_3ax) dx"‘(f(t)'f(t)‘/(; fo nndydx,
para qualquer U = (z, w, u, v,1), U=z w,i, v,1) em 4, onde
HOEHG! (3.37)
e E é uma constante positiva tal que
o - o
<i<2- (3.38)
1-d 1-d
Note que
L L
(L (U, U); = —ul(t)f wzdx—uz(t)f nx,Hwdx
£(1) (3.39)
f f (1- (t)y)—n (x,y)dydx,
para qualquer U = (z, w, u, v, 17)T € D(&/(t)). Como
a—r%wyrﬁnzz51U1—r%nwnﬂ+r%nn2 (3.40)
ay' ady ’ '
por (3.39) e (3.40), temos que
() 2
(A (DU, U)[:—yl(t) w?dx - o (1) n(x Dwdx+-— 5 wedx
0 (3.41)

_6(t)(1 T(t))f ng(x’l)dx_f(t)'[ (t)f f 2 dydx.
2 0 2 0o Jo

Agora, aplicando a desigualdade de Young ao segundo termo do lado direito de (3.41), obtemos que

HOBITAG] )fL )
(LU, U); < (,ul(t) 5 2\/_ wdx

(éw) 6un%n Iuﬂwh/ )

5 f % (x,1)dx (3.42)

f(t)lr(t)l ff
27(1) v(1) n°dydsx.
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Por (A3) e (3.37), segue que

( E 5 ) w
(LU, Uy <—m () |1-2- f w dx
0

2 2v1-d
2 — 5
_.ul(t)('f(l AL d)f n?(x, 1) dx (3.43)
2 2 0
+K(t)<UrU>L‘y
onde
V1+7'(1)?
K(n) = YT (@07 (3.44)
21(1)

Por (3.17), (3.18) e (3.38), temos que

& 5 E1-7'(1) 6V1-d
> e — > 0.

> g 5 5 (3.45)

Portanto, concluimos que
(LU, U)—x (1)U, U) <0, (3.46)

o que significa que o operador A1) = (1) —x(D)] é dissipativo (nos préximos passos usaremos o

como um pivo para entdo recuperar as propriedades pretendidas de «7).

Agora, vamos provar a sobrejetividade do operador AT — </ (), para t > 0 fixo. Para isso, dado
F=(fi,fo fs fa f5)T € #, buscamos U = (z, w, u, v,n) " em D(<# (1)) que é solucio de

Al - (1)U =F, (3.47)

isto é, as entradas de U satisfazem o sistema de equacoes

Az—w = fi, (3.48)

APz W — a1 Zxx — Golyy + 1 (W + p2(ON(x, 1) = pzfo, (3.49)
Au—-v = f, (3.50)

Apuv—azuxx— @zxx = pPufs (3.51)

At(Dz+ Q-7 (), 7(8) fs. (3.52)

Suponha que encontramos z, u com a regularidade apropriada. Portanto, de (3.48) e (3.50), temos

que

w = Az-fi, (3.53)
v = Au-—f. (3.54)

E claro que w, v € H, (0,L). Além disso, se 7/(t) = 0, entdo

y
n(x,y) = W(x)e‘“(”y+r(t)e‘“(”yf fs(x,5)eM D ds (3.55)
0
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é solucao de (3.52) satisfazendo
n(x,0) = w(x). (3.56)

Por outro lado,

Vofs(x,s)
— a(y,0) a0 5 o (s,t)
nx,y) =wx)e’"" +1(e Mgyl ds, (3.57)
onde
AT(t
oy 1) = ( )ln(l—T'(t)y), (3.58)

/(1)
é solucdo de (3.52) satisfazendo (3.56). A partir de agora, para fins de praticidade, vamos considerar

7/(t) = 0 (0 caso 7(t) # 0 é analogo), desta forma temos (levando em conta (3.53))
n(x,1) = we 470 +T(1f)e_’”(t)f01 f5(x, s)eMDs g
=(Az— e M 4 (e MWD fo 1 f5(x,5)eM DS g (3.59)
= Aze MO _ fe7 M +T(t)e_/hmf1f5(x, 5)eM s .
0

Substituindo (3.53) e (3.59) em (3.49), e (3.54) em (3.51), obtemos

AZ—A12xx — DUxx = 81, (3.60)
.60
Apyu— - = ’
Pull—aA3zUxx — A22xx = 82,

onde

a:= A2, + Aur (0 + Apa (e A9,

1
81:= Pz o+ Apzfi+ (D) fi + p2(t) fre M0 - Hz(l‘)T(t)e_Mmf fix, 9" ds, (3.61)
0

82:= pufatApufs.

Para resolver (3.60), usamos um procedimento padrao, considerando a forma bilinear Y : ((H, (0, L) x
H.(0,1))?> — R, dada por

L

L L
Y((z,u),(z,u) = af dex+a1f zxedx+a2f UyZedx
0 0

0 (3.62)

L L L
+/12puf uﬂdx+a3f ulexdx+a2f Z Uy dx.
0 0 0

Nao é dificil mostrar que Y é continuo e coercitivo, entdo aplicando o Teorema de Lax-Milgram,
obtemos uma solucéo para (z,u) € H,(0,L) x H,(0,L) para (3.60). Além disso, segue de (3.49) e
(3.51) que z,u € H?(0,L) e entdo (z, w, u, v,n) € D(L(1)).

Portanto, o operador AT — </ (t) é sobrejetivo para todo ¢ > 0. Como «(¢) > 0, temos

A —of ()= A+x(0)[—<4 () ésobrejetivo Vi>0. (3.63)
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Para completar a prova de (iii), basta provar que

Pl < sl

< , Vtselo,T], (3.64)
DIl

onde ® =(z,w, u, v, n)T, ¢ € uma constante positiva e || - ||; € a norma associada ao produto interno
(3.36). Para t,s € [0, T], temos

L 2
2 2 Elr—s £ |t—sl 2 2 2 2 a
P - DlIseTo :(l—ef0 )f [pzlwl +pulvl” + (a1 — a5/ ag) |zl + | —=zx + Vazuy| |dx
0

N

. L p1
+(f(t)r(t)—E(s)r(s)e%”_sl)f f lz(x, y) > dydx.
0 Jo

[t

E claro que 1 — e% Sl<o. Agora vamos provar ()T (t) — (f(s)r(s)e%'t_s| <0 para alguns ¢ > 0. Para

fazer isso, de (3.16) e pelo Teorema do Valor Médio, temos que
() =1()+7'(r)(t—9), (3.65)
para algum r € (s, ). Como ¢ é uma funcao nao crescente e ¢ > 0, obtemos
ST <EOT(S) +E()T (K- 9), (3.66)

o que implica

T _ L4 I’ (r)]

< |t — s]. (3.67)
¢(9)T(s) 17(5)
Usando (3.16) e o fato que 7’ € limitado, deduzimos que
)T () c RPN
<1l+—|t—s|<ew 7, (3.68)
£(8)T(s) 7o
o que prova (3.64) e, portanto, (iii) segue.
(iv) Observe que, de (A1), temos que
(1) = '(HT" (1) (V1 +7'(0)? (3.69)
21(0)V1+7'(1)? 27(1)? ’
é limitado em [0, T'] para todo T > 0. Além disso
0
p —pZ ) (O w + (D7 (-, 1)]
—A (DU = . 70
77 (1) 0 (3.70)
0
"1 y-1' (O (D)y-1)
T(t)2 77y
Como T”(I)Tmp;f;g?(Tlmp_l) é limitado em [0, T] por (A1), e considerando (A2) e (A3), temos
d 7 o0
—f (1) € L7°([0, T], B(D(«£(0)), A)), (3.71)

dat
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onde L ([0, T1, B(D(«7(0)), #)) é o espaco de classes de equivaléncia de fungdes essencialmente

limitadas e fortemente mensuraveis de [0, T] para B(D (< (0)), #).

Ent3o, (3.46), (3.63) e (3.64) implicam que a familia of = {7 () : ¢ € [0, T]} € uma familia estavel
de geradores em #° com constantes de estabilidade independentes de ¢, pela Proposicdo 1.1 de

(KATO, 2011). Portanto, as suposicoes (i)-(iv) do Teorema 3.1 sdo verificadas. Assim, o problema

U = 400, (372)
U(o) Up, '

tem uma Gnica solucdo U € C([0, +00), D(£(0))) N CL([0, +00), #) para Uy € D(<Z(0)). A solucdo
pedida de (3.30) é entido dada por

U(1) = el X995 g(p), (373)
pois
Uy(t) = k(1) e *O 495G (1) + eJo ¥ s (p)
— el ¥ ds e gy 4 F (1) T (1)
o) ds (374)
= of (1) el ¥ s (p)
= L (OU(L)
o que conclui a prova. OJ

3.4 Estabilidade exponencial

Esta secao é dedicada ao estudo do comportamento assintético. Mostramos que a solucao do

problema (3.24)-(3.26) é exponencialmente estavel usando o método da energia.

Definimos a energia associada a solucdo U(t) = (z(1), z; (1), u(t), u.(t),n(t)) do problema (3.24)-

(3.26) pelo seguinte funcional

1 L a 2
E(t) = —f P21z + pulugl® + (ay — a5/ as) |z * + 2 i+ Vazuy| | dx
2Jo v as
cOe (b (3.75)
T
+ fflnlzdydx.
2 0o Jo

Nosso esforco consiste em construir um funcional de Lyapunov adequado pelo método da energia.

O objetivo principal desta secao é provar o seguinte resultado de estabilidade.

Teorema 3.3
[Decaimento exponencial] Seja U(t) = (z(1), z,(t), u(t), u,(t),n(t)) a solugdo de (3.24)-(3.26) com

dados iniciais Uy € D(<f(0)) e E(t) a energia de U. Entao existem constantes positivas M e y tais que

E(t) < ME)e™ "', Vt=0. (3.76)
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Para a prova do Teorema 3.3 precisamos de varios lemas. Nosso primeiro resultado afirma que

a energia é uma funcao nao crescente e uniformemente limitada por E(0).

Lema 3.4
Seja U(t) = (z(1), z;(1), u(t), u(t), n(t)) a solugao de (3.24)-(3.26). Entdo, a energia E(t) satisfaz

= f i

-1 (1) 5\/
— (1)

iE(t) = - (1)
dr —H1

(3.77)

5 f In(x,1, NH%dx

<0.

Demonstracdo. Multiplicando (3.24); por z;, (3.24), por u; e integrando cada um deles por partes

sobre [0, L], obtemos

L
f(pzlztl + a|z.*)dx + azf uxzxtdx"'ﬂl(t)f |zt dx+uz(t)f n(x,1,0z.dx =0,(378)

2dt
1d , , L
5%[0 (Pulutl + as|uy| )dx+a2f0 ZylUygrdx =0.(379)
Agora, multiplicando (3.24)3 por £(1)n e integrando sobre [0, L] x [0, 11, obtemos

HE(t L rl g
N —Inlzdydx+€()f f (- r(t)y)—lnl dydx=0, (3.80)
2 o Jo dt

gue é equivalente a

dt(f(mmffud d) f()fltld _«S()f L 0P dx

(3.81)
! L p1
+€(t)r (t)f |n(x,1,t)|2dx+€(t) (l‘)f f Inlzdydx.
2 0 2 0o Jo
Combinando (3.78), (3.79) e (3.81), obtemos
d L L
%E(t):_ﬂl(t)f |Zt|2dx_lvt2(t)f n(x,l,t)ztdx+£f |z¢|* dx 0} )f In(x,1,01*d
0 0 (3 82)

li L ! L
+‘f(t)r (t)f |n(x,1,t)|2dx+§(t)r(t)f f i dydx.
2 0 2 0o Jo

Aplicando a desigualdade de Young e levando em conta (3.38), (A2) (que resulta em &’'() < 0), temos

que

t t
—E(t)< - l(t)—?— 2 (1) )f 12,12 dx

(m 5(m ©) |uz(rw )f "
V¢

(x,1,0)>dx

(t)r(t)f f 2 dydx
(3.83)

< —ulm( )f 2l dix

f(l—r(t)) 5\/ )f e L O dx

—,Ul(t)( 5

=<0.



3.4. Estabilidade exponencial 47

Dai a prova esta completa. [

No resultado anterior observamos que o funcional de energia restaura alguns termos do
funcional da energia com sinal negativo. Estamos interessados em construir um funcional de Lyapunov

que restaure a energia total do sistema com sinal negativo e, para isso, consideramos os seguintes

lemas.
Lema 3.5
Se U(t) = (z(1), z: (1), u(), us (1),n(r)) € uma solucdo de (3.24)-(3.26), entdo o funcional I, definido
por
L L
L(D :pzf zizdx— agpuf Urzdx (3.84)
0 a Jo

satisfaz a estimativa

d 1 2 Lo Lo

—hL(s—=(am-da5/as) | lzxl"dx+er | luldx

dt 2 0 0

N\ oL L (3.85)
+c1(1+—)f |zt|2dX+le In(x, 1, 0> dx,
€1/Jo 0

para quaisquer constantes £ >0 e ¢; > 0.
Demonstracdo. Derivando de I;(1), logo depois usando (3.24) e integrando por partes, segue que

d L L L
—L(n < —(al—aglag)fo szlzdx—yl(t)fo ztzdx—,uz(t)fo n(x,1,0zdx

dt
L a L (3.86)
+pzf lz;|% dx— 2'0”[ Uz dx.
0 a Jo
Por (A2) e (A3), obtemos que
d L L L
Eh(t) = —(a1—a§/a3)f szlzdx+u1(t)f IthIdx+|uz(t)|f In(x,1,0zldx
0 0 0
L L
+pzf |z, % dx — dilpuf Uz dx
0 30 (3.87)

IA

L L L
—(al—ag/ag)f szlzdx+u1(0)f Iztzldx+6,u1(0)f In(x, 1,0zl dx
0 0 0

L L
+pzf Iztlzdx—wf Urz;dx.
0 a Jo

Explorando as desigualdades de Young e Poincaré, obtemos as estimativas (3.85) e concluimos a

prova. [

Lema 3.6
Se U(t) = (z(1), 2 (1), u(1), us(£),m(t)) € uma solucao de (3.24) -(3.26), entdo o funcional I, definido

por

L L
L) = pzf ztzdx+puf usudx (3.88)
0 0
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satisfaz a estimativa

2

— L)< —=(a—a3las) | lzxl"dx— — 2z +Vazuy,| dx
dt 2 0 0 [Vas
L . (3.89)
+62f |z¢|” dx + ch In(x, 1,0 dx,
0 0
para alguma contante ¢, > 0.
Demonstracdo. Derivando de I,(t), usando (3.24) e integrando por partes, chegamos a
d L L L
Elz(t) = —alf szlzdx—Zazf uxzxdx—agf lugl® dx
oL . L. (3.90)
+pzf Iztlzdx—yl(t)f ztzdx—,uz(t)f n(x,1,t)zdx.
0 0 0
Por (A2) e (A3), juntamente com o fato de que a; = a; — a5/ as + a3/ as temos que
d L L a 2
Elz(t)s —(al—agla3)f szlzdx—f 2+ Vazuy| dx
0 0 as
Lo L L (3.91)
+pzf |z dx+u1(0)f Iztzldx+5p1(0)f In(x,1, )zl dx.
0 0 0
A estimativa (3.89) segue gracas as desigualdades de Young e Poincaré. [

Lema 3.7
Se U(t) = (z(1), z¢(1), u(t), us(t),n(t)) € uma solucado de (3.24)-(3.26), entdo o funcional I3, definido
por
L ap azpu L ap
L(t)=a fz( z+ au)dx— 2 fu( zZ+ au)dx 3.92
3 20z ) ¢ NG vas a5 Jo ¢ Vas vas ( )

satisfaz a estimativa

d agpqu 2 fL a
—L(H) < — Uddx+e —zy+Vazu
dr 3() \/0_3 o | t| 3 0 \/a—?) X 3Ux

+—f In(x,1,1)|"dx+cs3 (1+—)f |z:|“ dx,
€3 Jo €3)Jo

2 L
C3
dx+—f |z,|? dx
€3 Jo

(3.93)

para quaisquer constantes €3 >0 e c3 > 0.
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Demonstracdo. Derivando o funcional I3(t), usando (3.24) junto com integracao por partes, obtemos

d L L
_13(,j):_a2(al_a§/a3)f zx(£z+ ag,u) dx—azul(t)f zt( % z+ a3u) dx
0 0

dr N N
a (t)fL (xlt)( R vJau|dx+a fL (dg +\/a_u)dx
- 1,0 —=z u z z
2 M2 ; n NG 3 20z A t NG t 3Ut
L
- aZpuf ut(ﬂzt'F\/(l_gut) dx
a Jo \/6l_3
I (3.94)
=—ay(a) - azlag)fo zx(\/—a_3z+ \/_u) dx— ag/,tl(t)f zt(\/_z+ \/_u)
ar zpz 2
—-a (t)f (x,1,1) (—z+ asu| dx+ f |z dx
22t Jo 1 N Va Jo
L azp, (L azp, L
+ a»r\/a Zelpdx— —2 Uz dx — —2 f lu % dx.
2\/_30zf0 tUr asy/as Jo 1%t Va Jo ¢

Por (A2) e (A3), obtemos

d L a L a
%Ig(t)ﬁ—ag(al—a%/ag)](; zx(\/—2_3z+ \/a_gu) dx+a2,u1(0)f0 zt(\/jl_?,z+ \/a_gu) dx
L a
+ a0 (O)[ (x,l,t)(—z+ a u) (3.95)
20 U1 o n \/61_3 \/_3
L azpu L azpu L
+ dx——=2 d —z—f 2dx.
az\/a—spzfo ziupdx a7 o Uz dx N 1| dx
Em seguida, usamos as desigualdades de Young e Poincaré para obter (3.93). ]

Como em (KIRANE; SAID-HOUARI; ANWAR, 2011), levando em conta o Gltimo lema, introduzimos

o funcional Lo
J(1) ZET(t)f f e 2T\l dydx, &> 0.
o Jo

Claramente

ft(t
J(t)_"r( )(Tt()) ‘2’1f f Inl® dydx> f f Ini*dydx >0, (3.96)

sendo (3.17), (3.37), (3.38) e (A2) validos. Para este funcional, temos o seguinte resultado:

Lema 3.8 ((KIRANE; SAID-HOUARI; ANWAR, 2011, Lemma 3.7))
Seja U(t) = (z(1), z¢(t), u(t), u;(£),n(t)) é uma solucao de (3.24)-(3.26). Entdo o funcional J(t) satisfaz

d _rL
—J(1) = -2J(1) +5f |z(|* dx. (3.97)
dt 0

Agora estamos em condicoes de provar nosso resultado principal.

Prova do Teorema 3.3. Vamos construir um funcional de Lyapunov adequado £ que satisfaca a

seguinte relacdo de equivaléncia

NEW<ZL(t)<y:E(1), Vt=0, (3.98)
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para algum y1,y2 > 0 e para provar que

d

Ex(t) <-AZL(), Vt=0, (3.99)
para algum A > 0, o que implica

LM<LOe ™, vi=o. (3.100)

Vamos definir o funcional de Lyapunov

3
L) =NE@®)+ ) NiLit)+](1), (3.101)

i=1
onde N;, i = 1,2,3 sdo nUmeros reais positivos que serdao escolhidos posteriormente. Pelo Lema 3.4,

existe uma constante positiva K tal que

L L
iE(t)s—KU Iztlzdx+f In(x,l,t)lzdx). (3.102)
dt 0 0

Pela definicdo de £(1), temos que

3 p—
FAGEIVAGIED WAV AGIEFZAGIVIG] (3.103)
i=1

Segue de (3.75), das desigualdades de Young e Poincaré e do fato de que 7(f) < 7; paratodos t=0e

e~2"MY < 1 para todo y € (0,1) que
| L (1) - NE(®)| < ys3E(1), (3.104)

para alguma constante y3 > 0. Entao, podemos escolher N grande o suficiente para que y; := N—v3

e y2:= N+v3, entao
Y1E(t) < L(t) <y2E(t), Vt=0, (3.105)

vale.

Agora, derivando £(1), substituindo as estimativas (3.85), (3.89), (3.93), (3.97), (3.102) e

definindo €7 := N% ees:= Nis obtemos que

L
%zms - [NK—c1 (1+N1)N3—02N2—03(1+N3)N3—€]f 2,2 dx
0

L
- (NK— 1Ny — o Ny — c3N§)f In(x, 1, H12 dx
0

1 1 L (3.106)
— E(dl—dg/dg)N1+E(dl—ag/dg)Ng—CgN??]f |Zx|2dx
0
L ay 2 agpu L
— (N> -1 —zy+Vazuy| dx— N—lf w2 dx—2J(1).
(2)]()\/a_3x 3Ux \/a_33 0|t| J (1)
Primeiramente, escolhemos
Va
No>1, N3>Y5= e Ny>2c3N3/(ai—dlas). (3.107)

aspy
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Agora, como é(1)T(t) é ndo negativo e limitado, e escolhendo N suficientemente grande para que

(3.106) seja levado na seguinte estimativa

d L a 2 1
— L) < —ﬁf p2lzeP+ pulus P+ (a1 — a3 1a3)|zx >+ | —= 2y + /a3 Uy +€(t)r(t)f Inl*dy| dx,
dt 0 Vas 0
para alguma constante positiva . Portanto, de (3.75), temos
d
Ex(t) <-BE(t), Vit>O0. (3.108)
Em vista de (3.105) e (3.108), notamos que
d
Ez(t) <-AZ((), Vit>0, (3.109)
para algum A >0, o que leva a
LM <LOe M, ve>o. (3.110)

O resultado desejado (3.76) segue usando as estimativas (3.105) e (3.110). Ent3o, a prova do Teorema

3.3 esta completa. O
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Capitulo 4

Analise de estabilidade de vigas laminadas com
amortecimento Kelvin-Voigt e atraso de tempo

forte

4.1 Introducao

Neste capitulo, estamos interessados em estudar o sistema de vigas laminadas com grande
atraso em (x, t) € (0, 1) x [0,00) dado por
PUs + G(’W— ux)x = 0;
I;BS—¥)t —DBS—Y)xx — G — ty) — 1 BS — W) xxr — 2BS =Y xxe (X, £ —T) = 0, (4.1)

sujeito a condicoes de fronteira dadas por
u0,0) =yy(0,0) =840, =ux(l, ) =yw({, ) =S(,1)=0 V=0 (4.2)
e condicdes iniciais

u(x,0)=up(x), ui(x,0=u(x), wx0)=wox), x€(0,D),
wt(x) 0) = 1;”1 (X), S(x; 0) = S()(X), St(x) 0) = Sl (X), X € (0) l)) (4~3)
(38— ’l//)xxt(xy r— T) = fo(x) r— T)) (xy t) € (0) l) X (OyT)-

A viga laminada é um modelo matematico dado por duas placas conectadas por uma camada
adesiva de espessura e massa despreziveis. Um exemplo de aplicacdo de um adesivo para colar duas

placas (camadas) é mostrado na Figura 2.

O modelo foi derivado da teoria de Timoshenko por S. Hansen e R. Spies (HANSEN, 1994;
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> T e > il e i ) W 2CE W 2eb. o 24

M Adhesive layer of negligible thickness and mass Plate

Figura 2 - Aplicacdo de adesivo (esquerda) e chapa na prensa (direita)

HANSEN; SPIES, 1997) e é dado pelas trés equacdes a seguir

pwir+ G —wy) =0,
Ip BStt—Yet) — G(w —Wx) = DBsxx —Pxx) =0, (4-4)
Ipsi i+ Gy —wy) + %ys+ %ﬁst —Ds,=0,

onde os coeficientes p, G, I, D,y, f sdo constantes positivas e representam densidade, rigidez ao
cisalhamento, momento de inércia de massa, rigidez a flexao, rigidez adesiva e parametro de amor-
tecimento adesivo, respectivamente. A funcado w(x, t) é o deslocamento transversal, v (x, ) é o
deslocamento rotacional e s(x, t) € proporcional a quantidade de escorregamento ao longo da

interface. A terceira equacao descreve a dindmica do deslizamento.

Para vigas laminadas sem atraso, comecamos citando a contribuicido em (WANG; XU; YUNG,

2005), onde os autores consideraram (4.4) com o seguinte controle de contorno,
w0)=yw(0)=s0)=0, v1)-wx)=ko1), s1)=0, @Gsx—ywy)1d)=-k2@Bs;—vy)1)

e obtiveram que a energia decai exponencialmente assumindo k; # r; (i = 1,2), onde

Este resultado foi melhorado por M. Mustafa, que estabeleceu o decaimento exponencial para
r = 1o e estendeu esses resultados para casos de fungdes nao lineares no controle de fronteira, veja
(MUSTAFA, 2018a). Também podemos encontrar alguns resultados de estabilidade no sistema (4.4)
com amortecimento de fronteira em (CAO; LIU; XU, 2007; RAPOSO et al., 2017b; TATAR, 2015), etc. C.
Raposo (RAPOSO, 2016) investigou em seu pioneiro trabalho, o sistema (4.4) adicionando termos de
amortecimento de atrito na transversal deslocamento e angulo de rotacao, respectivamente. Ele
estabeleceu a estabilidade exponencial do sistema sem quaisquer restricoes nos coeficientes. O
resultado foi estendido para uma estrutura nao linear por Feng et al. (FENG et al., 2018). O sistema
de vigas laminadas sdo tdo interessantes, que podemos citar diversos resultados envolvendo o
sistema (4.4) com outros tipos de mecanismos de amortecimento, como por exemplo (APALARA,
2017; APALARA, 2019; CHEN; LIU; CHEN, 2019; LO; TATAR, 2015; LO; TATAR, 2016; MUSTAFA, 2018b)

para citar apenas algumas referéncias.

Os efeitos de atraso geralmente aparecem em muitos problemas praticos, por exemplo, feno-
menos quimicos, fisicos, térmicos e econdmicos, e assim por diante, e a presenca de um atraso

arbitrariamente pequeno pode desestabilizar um sistema que é uniforme ou assintoticamente estavel
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na auséncia de atraso. Em (NICAISE; PIGNOTTI, 2006), os autores consideraram o sistema de equacao
de onda

ut,;—AMZO, x€Q,t>0,
u=0, x€ly, t>0,

%+u1ut(t)+ﬂ2ut([—‘l’) =0, xeI'y, t>0,

e provaram que a energia decai exponencialmente sob a suposi¢ao u, < ui, caso contrario, o sistema
fica instavel. Resultados semelhantes podem ser encontrado em (NICAISE; PIGNOTTI, 2011; NICAISE;
PIGNOTTI; VALEIN, 2011).

Para vigas laminadas com retardo de tempo, ha poucos resultados. B. Feng (FENG, 2018)
estudou o sistema (4.4) com controles na fronteira e termos internos de retardo constantes nas trés
equacoes. Ele provou que o sistema é exponencialmente estavel se os coeficientes de atraso de
tempo forem pequenos. K. Mpungu et al. (MPUNGU; APALARA; MUMINOV, 2021) consideraram o
sistema (4.4) com amortecimento por friccdo e um termo de retardo interno constante agindo no
deslocamento transversal. Eles obtiveram que o sistema é exponencialmente estavel supondo que as
velocidades de onda iguais se mantém, caso contrario, a energia decai polinomialmente. A. Choucha
et al. (CHOUCHA; OUCHENANE; BOULAARAS, 2020) estudaram uma viga laminada termoelastica de
Timoshenko com retardo distribuido, considerando a conducao de calor dada pela lei de Cattaneo.
Eles provaram os mesmos resultados de estabilidade que em (MPUNGU; APALARA; MUMINOQV,
2021).

Observe que, combinando as equacoes (4.4), e (4.4)3, obtemos

pWes+ G(’L[/ —Wy)x =0,
IpWir— DYyx +4G(W —wy) +4ys+4Ps; = 0.

(4.5)

Tomando s = 0 em (4.5), o sistema se reduz ao sistema de Timoshenko. B. Said-Houari e Y. Laskri

(SAID-HOUARI; LASKRI, 2010) investigaram um sistema Timoshenko com um retardo dado por

P1QP¢t — K((Px +1,[/)x =0,
P2V it — bWxx +K(Qx + W) + W+ oy (£ —7) =0,

e estabeleceram o decaimento exponencial da energia considerando como uma de suas hipéteses
que U, < 1. O resultado foi estendido por M. Kirane et al. ao caso do retardo variavel no tempo,
veja (KIRANE; SAID-HOUARI; ANWAR, 2011). H. Makheloufi et al. (MAKHELOUFI; BAHLIL; FENG, 2021)

estudaram um sistema de Timoshenko com um forte amortecimento e um forte retardo dado por

P1Ptt —K(@x +Y)x — 1 Pxxt — M2@Pxxt (E—T) =0,
P2V — bWxx +x(px+y)=0.

Eles provaram que o sistema nao é exponencialmente estavel, mesmo que as velocidades de propaga-
coes sejam iguais. Porém eles conseguiram provar que o sistema decai polinomialmente com taxa de

=12 Além disso, concluiram que essa taxa de decaimento é 6tima. Para obter mais resultados sobre
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a estabilidade de Timoshenko com retardo de tempo, pode-se consultar (APALARA; MESSAQUDI,
2015; DJILALI; BENAISSA, 2015; GUESMIA, 2014; KAFINI et al., 2015), etc.

Motivados pelas referéncias citadas acima, consideramos neste capitulo, o sistema de vigas
laminadas com grande retado, ou seja, u2(3S — ) s (x, t — 7). Nosso objetivo é estudar a solu-
cao global e os resultados de estabilidade para o sistema, levando em consideracao o nimero de
estabilidade

G D
i
Utilizando as técnicas de semigrupo de operadores lineares, provamos a solucao global do sistema,
veja a Secao 4.2. Na Secao 4.3, usando o Teorema de Gearhart-Herbst-Priiss-Huang, provamos que
o sistema (4.1)-(4.3) ndo é exponencialmente estavel se y # 0. Por fim, a Secdo 4.4 é dedicada ao
decaimento de energia do sistema, onde provamos que a energia decai exponencialmente no caso
que as velocidades de propagacao de ondas sejam iguais, ou seja, y = 0. Caso contrario, se y #0, 0

sistema vai para zero polinomialmente com taxa ¢~/2.

4.2 Solucao global
Introduzimos uma nova variavel dependente z para lidar com o termo de feedback de atraso,
ie.,
z(x,n, ) =3S—y)(x,t—n1) em (0,1)x(0,1) x (0,00). (4.2.1)
Verifica-se facilmente que o z satisfaz
12(x,m, )+ 2p(x,m, 1) =0 em (0,1) x (0,1) x (0,00). (4.2.2)

Seguindo a ideia de (WANG; XU; YUNG, 2005), denotamos a rotacao efetiva do angulo por ¢ :=3S—1.

Por (4.2.2), o sistema (4.1) pode ser reescrito da seguinte forma:

pur+GBS—&—uy)x=0 em (0,1)x(0,00),
IpStt = DSxx — GBS —¢ — Uy) — 1 xxr — P2zxx(x,1,1) =0 em (0,1) x (0,00),

31,51, —3DSyy +3G(BS—& — u) +48S+4yS; =0 em (0,1) x (0,00), (423
12¢(x, 1, 1) + zp(x,m, 1) =0 em (0,1) x (0,1) x (0,00),
sujeito as condicoes de fronteira fornecidas em (4.2), ou seja,
u0,6)=¢x0,0)=8x0,0) =u,(l,t) =, ) =S, 1) =0 em (0,00) (4.2.4)
e condicoes iniciais
u(x,0) =ugp, u;(x,00=uy, <&(x,0=<%, x€(0,D),
$i(x,00=¢1, S(x,00=S8p, Si(x,00=8, x€(0,D), (4.2.5)

z(x,n,0) = fo(x,—n7) =&2(x,m),  (x,m) €(0,1) x (0, 1).
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A seguir, usando a teoria de semigrupo encontrada em (PAZY, 1983), obteremos o resultado de

existéncia, unicidade e regularidade para o problema (4.2.3)-(4.2.5).

Agora, consideremos os seguintes espacos
Hy0,)={p: e H'(0,D),p0) =0}, HO,D)={p:peH (0D, o) =0} (4.2.6)
e o espaco de Hilbert
F=Hy(0,1) x L*(0,1) x Hy(0,1) x L*(0,1) x Hy(0,1) x L*(0,1) x Hy((0,1); L*(0,1)),  (4.27)

munido com o seguinte produto interno
l

- l —_—
vuv* dx+Df Exérdx
0

! l
(U,U*);f:pf dex+Gf (3S—E—ux)(38*—g‘*—u;)dx+lpf
0 0 0 (4.2.8)

I 1 1 I el
+31pf0 yy*dx+3DfO Sij;dx+46f0 SS*dx+(f0f0 zyzy dndx,

para qualquer U = (u, w,¢, v, S, y,2), U* = (u*, w*,&*, v*, 8%, y*,2") em A, onde w=u;, v=_, e

y = S¢. A norma induzida pelo produto interno é

1UIl7 = pllwll® + GI3S = & = uxll®* + L, vI* + DIE I + 3,1l ylI?

, , 1 , (4.2.9)
+3D|SxlI” +461S +(f0 | zxll” dn,
onde ¢ é uma constante positiva satisfazendo
Tlpol < { < 7 (20 — |p2l), (4.2.10)

Introduzindo U(1) = (u(1), w(t),&(1), v(2), S(1), y(1), 2(8)) " € Uy = (uo, u1,80,€1, S0, S1,82) ", 0
sistema (4.2.3)-(4.2.5) pode ser escrito como o seguinte problema abstrato de valor inicial em A4

uit) = LU, t>0,
(4.2.11)
U0 Uo,

onde o operador «f : D(«f) c A — J€ é dado por

u w
w ~Gp ' (3S—¢&—uy)y
¢ v
A v [=| N (Déxx+ GBS =& — ) + 1 vx + 22xx(, 1) |, (4.2.12)
S y
y L' (DSyx— GBS —&—uy) — 365 3yy)
z —T_IZT’

com
u, S, Dé+ v+ ppz(-,1) € HX(0,1), we HL(0,1),
D()=1 U:=(w,w,,v,8,y,2)" €# | v,ye HL0,]), ze HL((0,1; H'(0,1)), . (4.213)
ux(l) = §x(0) = 5x(0) = 2(0,-) = 0.
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Note que D(«¢) é denso em A e facilmente se mostra a dissipatividade do operador < assu-
mindo que |u,| < w1 (para mais detalhes, veja o Teorema 4.4.2), e para cada U = (u, w,é,1,S,y,2) "

em D(&7), temos que

Re(/ U, U) 7o < —K(llvxl® + [ y1% + ll 2 (x, D7), (4.2.14)
onde K := min{ul - % - %, % - %,4)/} > 0 desde que (4.2.10) se mantenha.

O proximo resultado é o teorema principal dessa secdo, que nos garante a existéncia e unicidade

do problema (4.2.11).

Teorema 4.1 (Solucao global)
Suponha que |u2| < u;, entdo para qualquer Uy € A, existe uma Unica solucao U € C([0,00), )
do problema (4.2.11). Além disso, se Uy € 2(<f), entdo

U e C([0,00), 2(<#)) N C'([0,00), H#). (4.2.15)

Demonstracdo. Como o operador <f é dissipativo. Agora, provaremos que o operador A I—<f é sobre-
jetivo para qualquer A > 0. Paraisso, seja F = (f1, f2, .. .,f7)T € A, buscamos U = (u, w,¢, v, S, y, z)T €

D(<f) que é solucao de (A1 —«/)U = F, isto é, as entradas de U satisfazem o sistema de equacoes

Au-w = fi, (4.2.16)

Apw+GBS—¢—uy)y = pfe, (4.2.17)

AM-v = f3, (4.2.18)

AoV = D¢xx — GBS =& — Ux) — 1 Vsx — HoZxx(X,1) = Iy fa, (4.2.19)
AS—y = fs, (4.2.20)

3A,y —3DSxx+3G@BS—&—uy) +46S+4yy = 3lyfs, (4.2.21)
AMz+zy = 1f7. (4.2.22)

Suponha que encontramos u, ¢ e S com a regularidade apropriada. Portanto, de (4.2.16), (4.2.18) e

(4.2.20), temos que

w = Au-fi, (4.2.23)
v = A-fi (4.2.24)
y = AS—fs. (4.2.25)

Eclaroque we HL(0,D e v,y € H,(0,1). Além disso,
-Atn -Atn " Ato
z(x,n) =v(x)e +Te fr(x,0)e""? do (4.2.26)
0
é solucdo de (4.2.22) satisfazendo

z(x,0) = v(x). (4.2.27)
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Levando em conta (4.2.24), temos que

1
z(x,1) = ve M + Te_’“f fr(x,0)e*? do
0
1
= (A& - fy)e M+ Te_’”f f(x,0)eM do (4.2.28)
0

= Ae M= freM +Te_“f01f7(x, 0 e' do.
Substituindo (4.2.23) em (4.2.17), (4.2.24) e (4.2.28) em (4.2.19) e (4.2.25) em (4.2.21), obtemos
A2pu+GBS—E—uy), =g,
NP 1oE = abyy— GBS —&—uy) = g+ My, (4.2.29)
¢S—3DSyx+3G(BS—&—uy) = g3,
onde
a:=D+Au +Ape™,  ¢:= 3021, +45 +41y,
gi:=pfatApfi, &= DpfatAlyfs, &:= 3lpfo+3A,f5+4yfs, (4.2.30)
Pyx:= — (Nl +N29_M)f3,xx+N2T€_Mf01f7,xx(xﬁ)e/1w do.
Para resolver (4.2.29), usamos um procedimento padrao, considerando a forma sesquilinear
B: H,(0,1) x Hy(0,1) x Hy(0,1) - C, (4.2.31)

dada por

I l
B((w,é,8), w*,¢*,8%) := Azpf uu*dx+ Gf (BS—¢—uy)3S*—¢&*—ul)dx
. g I / (4.2.32)
+121pf fé*dx+af 5x§;dx+st sxs;dx+qf SS* dx,

0 0 0 0

para cada (1,¢,S), (u*,&*,$*) e H:= H,(0,1) x H} (0,1) x H,} (0, 1) seguido pelo funcional linear conti-

nuo
1 1 _ I I
g(u*,f*,S*)::f glu*dx+f ggf*dx—f hxg‘;';dx+f g3S*dx, (4.2.33)
0 0 0 0
para cada (u*,&*,S*) € H:= Hy(0,1) x H} (0,1) x H,(0,1).

Nao é dificil mostrar que B é continua. Para provar que B é coercivo, observemos que, aplicando

as desigualdades de Holder, Poincaré e Young, obtemos
1 ) i
Re{B((1,&,9), w,&,9))} := Azpf |u|2dx+Gf 13§ —¢ - ux|2dx+121pf &7 dx
0 0 0

1 1 I
+0¢f Ifxlzdx+3Df Ilezdx+cf 1S1?dx (4.2.34)
0 0 0

> Cll(u, &, S)IIf;.

Assim, aplicando o Teorema de Lax-Milgram, obtemos uma solucio para (i, ¢, S) € H para (4.2.29).
Além disso, segue de (4.2.17), (4.2.19) e (4.2.21) que u, S, D¢ + i v + wpz(-,1) € H2(0,1) e assim
(u,w,¢, v, S,y,2) € D(of). Conseqlientemente, o resultado do Teorema 4.1 segue do Teorema de

Lumer-Phillips. [
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4.3 Falta de estabilidade exponencial

Nesta secdo, usaremos o Teorema de Gearhart-Herbst-Priiss-Huang 4.2, ((GEARHART, 1978;
HUANG, 1985; PRUSS, 1984)), para provarmos que o sistema (4.2.3)-(4.2.5) ndo é exponencialmente

estavel, caso y #0.

Teorema 4.2
Seja T(1) = e“* um Cy-semigrupo de contracbes em um espaco de Hilbert #, gerado por um

operador linear of : D(«f) ¢ A — F€. Entao T(t) é exponencialmente estavel se, e somente se,

o) D {i;LeR} = iR e limsup [|(iA] — )" | ) < 00, (4.3.1)

[Al—00

onde p(<f) é o conjunto resolvente do operador linear <.

O resultado principal desta secao é dado pelo seguinte teorema:

Teorema 4.3
Suponha que y # 0, entdo o semigrupo associado ao sistema (4.2.3)-(4.2.5) ndo é exponencialmente

estavel.

Demonstracdo. Para provar este resultado, vamos argumentar por contradicdo, ou seja, mostrare-
mos que existe um sequéncia (A,;) en € R com |A,,| — 0o € (Uy) nen € D(f) para (Fp) nen € A, tais

que
(iApI—L)Uy, = Fy, (4.3.2)

onde (F,) é limitado em #, mas || U, | tende ao infinito. Reescrevendo a equacao resolvente

(4.3.2) em termos de seus componentes, com
T 1. T
Ul’l = (un; wn:fn’ Vn»Sn;J/n»Zn) € F}’l = (Or —P ! Sln(ﬁnX),O, 0,0,0, 0) ’

onde B, :=(2n+1)n/2L, temos que

iAup—wp, = 0, (4.3.3)

iApwyn+GBSp—Epn—Upyx)y = —sin(Bpx), (4.3.4)

iAén—vy = 0, (4.3.5)

iApdpUp —DEpyxx — GBSy —&n— Wnx) — M1 Vnyxx — M2Znxx (1) = 0, (4.3.6)
iAnSpn—yn = 0, (4.3.7)

idn3IpYn —3DSp xx +3GBSy —En— Uny) +40S, +4yyn = 0, (4.3.8)
iATzn+2zpy = 0. (4.3.9)
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De (4.3.3), (4.3.5) € (4.3.7), obtemos w,, = iAup, v, = iA, & € ¥y = i1, Sy. Entdo podemos escrever

—A5pun+GBSn—En—unx)x = —sin(B,x),(4.3.10)
_A;qupén - Dfn,xx -GBSy —¢n— Up,x) — iAn/vllgn,xx —M2Zpxx(x,1) = 0 (4.3.1)
~A231,S, =3DS; xx +3G(BSn — & — U ) +48S, +4id,yS, = 0, (4.3.12)
iMpTzn+2zny = 0 (4.3.13)
Devido as condicoes de fronteira (4.2.4), as funcbes dadas por
Up(x) =Apsin(f,x), &n(x)=B,cos(B,x),
Sn(x) =Cucos(frx), zu(x,n,7)=@u1n,1)cos(f,x),
sdo solucdes do sistema (4.3.10)-(4.3.13) se, somente se A,,,B,,, C,, e ¢, (1, T) satisfazem
(Aip—ﬁiG)An—ﬁnGBn+3ﬁnGcn -1, (4.3.14)
,BnGAn - (A;qup - ,BiD -G- i/ln,ulﬁ;zq)Bn - 3Gcn + ,uZﬁ;zq(Pn(er) = 0, (4-3-15)
8BnGA, +3GB, + (1231, 364D - 9G 45— 4idyy|Cu = O, (4.3.16)
0 .
%wn(n,r) +idppn(n,1) = 0. (4.3.17)
De (4.3.5) e ztemos ¢,(0,7) = i1,B, e resolvendo (4.3.17), obtemos
©n(n,7) = i/lne_MnTan- (4.3.18)

Portanto, o sistema (4.3.14)-(4.3.17) é equivalente a

(/lip_ﬁ%zG)An_ﬁnGBn"‘gﬁnGcn = 1, (4.3.19)
BnGA, (/121,, B2D — G- idpp1 B2 — idnpiz B2 -’M)B ~3GC,

Il
L

(4.3.20)
3,GA, +3GB, + (1231, 365D -9G-46 — 4idny|C, = 0. (4321

Escolhemos a sequéncia de nimeros reais

G
Api= ;(1+ﬂ%,), paratodo neN,

que nos fornece A2 p — f2G = G. Logo,

B.GA, —®,B,-3GC, = 0, (4.3.23)
36,GA,,+3GB,+%¥,C, = 0, (4.3.24)
onde
®,:=1, (A +xB% - z— A2~ uz/lne"”"), (4.3.25)
Ip Ip
46 4
v, :zBIp(Y+Xﬁn———z 14 /1") (4.3.26)

31, 3,
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com

G G G 3G
Ai=——— e Yi=———.

p Ip p I

Resolvendo as equacdes (4.3.23)-(4.3.24), temos que

A, = c,~——«C .3.2
n S,BnGz"‘S,Ban)n n G n (4.3.27)
e
¥Y,+9G IpX

—C,, ~— - C.. 4.3.28
3G+3D, " i+ ppe YA, (4.3.28)

n:

Substituindo as equacoes (4.3.27) e (4.3.28) em (4.3.22), obtemos

i (1 + poe ™) A,

C,~- - -
" ix (11 + poe” ™) A = 3iBnGi (1 + e ™) A+ GBrlpx
1
-~ (4.3.29)
(Ip)(_sG) IBn
Agora, substituindo (4.3.29) em (4.3.27) e (4.3.28), obtemos
Ipx
P
A, ~—P% 4.3.30
" G(Ipx -3G) ( )
e
Ipx
0
B, ~ - : : (4.3.31)
" i (Iox - 3G) (1 + e ) A By
Finalmente, temos que
L
1Ul% = plwall® = A2 pllual® = A7 pl Ayl fo |sin(B,x)|>dx ~ O(n?). (4.3.32)
Ent3o, como n — oo, segue que
. 2 . 2 _
Jim [|Unll%, = p im_ [lw]|” = co. (4.3.33)

Aplicando o Teorema 4.2, concluimos que o semigrupo T'(t) associado ao sistema (4.2.3)-(4.2.5) ndo

tem decaimento exponencial quando y # 0. O

4.4 Comportamento assintético

Esta secao é dedicada ao estudo do comportamento assintotico. Mostraremos que, sob as
hipéteses |u2| < u; € ¥ =0, asolugao do problema (4.2.3)-(4.2.5) é exponencialmente estavel usando

o método da energia. Caso contrario, a energia decai polinomialmente.
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4.4.1 Dissipacao da energia

Definimos a energia associada a solucdo U(t) = (u(2), u (1), (1), E.(1),S(1),S:(1),z(1) " do

problema (4.2.3)-(4.2.5) pela seguinte formula

1 l
5= L [ (00 41,8 431,50+ D& +3D8% + 485+ G5 -y ) s
0

( I pl
+—f f Z2dndx.
2Jo Jo

O préximo resultado afirma que a energia € uma funcao nao crescente.

(4.4.1)

Teorema 4.4
Seja U(t) = (u(t), u(1),E(0),E4(8), S(1), S4(1), z2(£)) T uma solugdo de (4.2.3)-(4.2.5). Para |po| < 1, a

energia do sistema satisfaz a lei de dissipacao, dada por

d l l l
aE(r)s—l((f sidx+f fitdﬁf zi(x,l)dx), paratodo >0, (4.4.2)
0 0 0

onde K := min{ul —————— —,4)/} > 0.

Demonstracdo. Multiplicando (4.2.3); por u;, (4.2.3)» por &4, (4.2.3)3 por S; e integrando cada um

deles por partes sobre [0, [], obtemos

2dtf pusdx— Gf BS—v—u)uy,dx=0, (4.4.3)
1 ! 1
E%f (Ip§%+D£i)dx—Gf(3S—w—ux)ftdx+u1ffitdx+u2f§xtzx(x,1)dx:0, (4.4.4)

1d

Zdtf (31,87 +3DS2 +485%) dx+3Gf B3S—w - ux)Stdx+4yf S2dx=0. (4.4.5)

Agora, derivando (4.2.3), em relacdo a x, multiplicando o resultado por %zx e integrando sobre
[0,1] x [0,1], obtemos

6 2
Zdtf f z dndx— fz (x,Ddx+—=— f(f dx. (4.4.6)
Combinando (4.4.3), (4.4.4), (4.4.5) e (4.4.6), obtemos

d l I I
EE(”:_M[ :ff”dx—ugf éxtzx(x,l)dx—4yf S%dx
0

¢

¢ (4.47)
-— | z 2(x, dx+—=— féz dx.
2T

Aplicando a desigualdade de Young e levando em conta (4.2.10) concluimos a demonstracdo. [

4.4.2 Lemas técnicos

Na secdo anterior, observamos que o funcional de energia restaura alguns termos de energia
com sinal negativo. Estamos interessados em construir um funcional de Lyapunov que restaure a

energia total do sistema com sinal negativo e, para isso, consideramos os seguintes lemas.
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Lema 4.5
Se U(t) = (u(t), us (1), (1), E4(1), S(8), Se(1), z(1)) T é uma solucdo de (4.2.3)-(4.2.5), entdo o funcional
I, definido por

l
Li(1):= Ipfo ¢¢rdx (4.4.8)

satisfaz a estimativa

d D r! ! ! I
—Il(t)s——f 6idx+clf Eitdx+clf (3S—€—ux)2dx+clf zi(x,l)dx, (4.4.9)
dt 2 Jo 0 0 0

3u% 3cpG* 3ub
2D’ 2D ’2D

para alguma constante ¢; := max{lpc,, + } >0, onde cp, € a constante de Poincaré.

Demonstracdo. Derivando I; (1), usando (4.2.3) e integrando por partes, chegamos a

l 1 1
ifl(t)zzpf 5§dx—Df 5§dx+cf EBS—E—uy)dx
dt 0 0 0

! ! (4.4.10)
_uIL 6x€xtdx_lvlzj(; é-xe(x,l)dx.
Segue das desigualdades de Young e Poincaré que
! D (! 3¢,G% [l
Gf 6(3S—€—ux)dxs—f Edx+ =2 f(38—€—ux)2dx
) (4.4.1)
Dflgzd 3G fl(ss E—up?d
< — N S
=6 ) " op el A,
! D [l 3u2 [l
—th f $xfxrdx < — f Edx+— f &2, dx, (4.4.12)
0 6 Jo 2D Jo
I D (! 3,@ I
—uzf Exzx(x,l)de—f g‘idx+—f Z2(x,1) dx. (4.4.13)
0 6 Jo 2D Jo
Consequentemente, de (4.4.10)-(4.4.13), obtemos (4.4.9). O]

Lema 4.6
Suponha que y = 0. Se U(#) = (u(t), u,(1),E(8),E,(1), S(1), S¢ (1), z(1)) T € uma solucdo de (4.2.3)-
(4.2.5), entdo o funcional I, definido por

l l
L(1):= —3pr UrSy dx+3Ipr (BS—¢—uy)S;dx (4.4.14)
0 0

satisfaz a estimativa

d ! ! ! !
E[z(t) < —sz (BS—¢&—uy)? dx+czf fitdx+02f Sidx+czf S% dx, (4.4.15)
0 0 0 0

31,G 211,G
2 072

para alguma constante ¢, := max{ + 4y2,4620pG,} > 0, onde ¢, € a constante de Poincaré.
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Demonstracdo. Derivando o funcional I,(1), usando (4.2.3), integrando por partes e pelo fato que
v =—(3S—-vy);+3S;, obtemos

d l
Elg(t):—?)sz 3S—¢—uy?dx—31,G f tftdx+91pr S7dx

1
_45Gf BS-¢- ux)de—4YGf(3S—f— ux)Stdx—Ei(IpG—pD)f uxtStdx.(4'4'16)
0 0 A

pe
Como y =0, o termo _# é na verdade igual a zero. Explorando as desigualdades de Young e Poincaré,

estimamos os termos n3o quadrados de (4.4.16) como segue

31,G
31,6 f tfzdx<— f Gax+ 222 'S, (4.4.17)

1 1 1
—46Gf (SS—f—ux)dest (3S—E—ux)2dx+462Gf S?dx
0 0

, * (4.4.18)
< Gf (B3S—&—uy)? dx+45chGf Si dx,
0 0
! ! I
—4yGf (BS—¢—uy)S;dx < Gf (BS—¢—uy)’dx+ 4y2c;f S2dx. (4.4.19)
0 0 0
Substituindo as trés estimativas acima em (4.4.16) completamos a prova. O]

Lema 4.7
Se U(t) = (u(t), us (1), (1), E (1), S(1), S; (1), z(1)) T é uma solucdo de (4.2.3)-(4.2.5), entdo o funcional
I3, definido por

1 1 X
Ig(t)::?)lpfo Stde+3pf0 utfo S(r)drdx (4.4.20)

satisfaz a estimativa

d ! l l
aIg,ms—spf sidx—saf Szdx+83f u%dx+c3(1+—)f S2dx, (4.4.21)
0 0 0
2 2
para qualquer e3 >0 e algum c¢3:= max{31p,4%,%}.

Demonstracdo. Derivando I3(t), usando (4.2.3) e integrando por partes, obtemos
d ! ! )
— I3(1) :—3Df sidx—sz Szdx—4yf S:Sdx

0 0 0

dt
l l X
+3Ipf S?dx+3pf u,f S;(r)drdx.
0 0 0

Usando as desigualdades de Young e de Cauchy-Schwarz, estimamos que

(4.4.22)

I ! 42 [l
—4yf S$;:Sdx < 6] S?dx+ Tf S% dx, (4.4.23)
0 0 0
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l X l 9p2 l X 2
Spf utf St(r)drdeEg;f u?dx+—f (f St(r)dr) dx
0 0 0 4e3 Jo \Jo

l 9] 2 nl
Sggf utdx+—pf S2dx.
0 4ez Jo

A estimativa (4.4.21) segue de (4.4.22)-(4.4.24). O

(4.4.24)

Lema 4.8
Se U(t) = (u(t), us (1), (1), E4(1), S(1), Se(1), z(1)) T é uma solucdo de (4.2.3)-(4.2.5), entdo o funcional
1, definido por

!
L(t) = —pf u,udx (4.4.25)
0

satisfaz a estimativa
d I I l
EL}(US—pf u?dx+84f g‘idx+c4f Sidx+c4(1+—)f 3S—¢—uy)*dx, (4.4.26)
0 0 0

2

para qualquer €4 > 0 e algum ¢4 := max{& G—C} >0, onde ¢, € a constante de Poincaré.

Demonstracdo. Derivando de I,(t), usando (4.2.3), integrando por partes e pelo fato que u, =

—(3S—¢&—uy) —¢E+38S, obtemos

d Ly l 2

— L) =—p | u;dx+G| BS-¢—uy) dx
0 0

dt (4.4.27)

l l
+Gf (3S—€—ux)€dx—3Gf (3S-¢&—uy,)Sdx.
0 0

Usando as desigualdades de Young e Poincaré, o terceiro e quarto termos em (4.4.27) podem ser

estimados como segue

I
& f Edx
c
p 0 (4.4.28)
G’cp ! 2 o
< f (3S—¢—uy) dx+£4f ¢Ldx,
deq4 Jo 0
! 3G (! ) 3G (!,
-3G (SS—f—ux)des?f (3S—¢&—uy) dx+—f S°d
0 5 % (4.4.29)
s;[ (3S—<f—ux)2dx+ f Szdx.
A afirmacao do lema segue substituindo as duas estimativas acima em (4.4.27). ]

Lema 4.9
Se U(t) = (u(t), us (1), (1), E4(1), S(8), S¢ (1), z(1)) T é uma solucdo de (4.2.3)-(4.2.5), entdo o funcional
I5, definido por

I prl
I5(1) ::f f e_zmzi(x,n) dndx (4.4.30)
0 Jo

satisfaz a estimativa

d or I prl ) e—2‘r ,
—I5(t) < —e f f zi(x,m)dndx— f z5 2(x,1) dx+—f &L dx. (4.4.31)
dt o Jo 2T
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Demonstracdo. Diferenciando I5(t) e usando (4.2.3), temos que

d I
—I5(1) = —;f f e ™z, (x, 1) zxn (x,m) dn dx
0 Jo

dt
I rl 1 I rl 0
=- f f e *TZ(x,m) dndx - — f f — (e™*22(x,m)) dndx (4.4.32)
0 Jo 2t Jo Jo On

I pl1 1 l
= —f f e_zmzjzc(x,n) dndx — z—f (e_ZTZ?C(x,l)_fit) dx.
0 Jo TJo

Em seguida, explorando a desigualdade e 2" < ¢72™ < 1 para qualquer n € (0,1), chegamos na
estimativa (4.4.31). O
4.4.3 Estabilidade exponencial

Estamos agora em condicoes de provar nosso principal resultado, que é enunciado no seguinte

teorema:

Teorema 4.10 (Decaimento exponencial)
Seja U(8) = (u(1), us (1), (), E,(1), S(1), S, (1), z(£)) T a solucdo de (4.2.3)-(4.2.5) com dados iniciais
Uy € D(«/) e E(t) a energia de U. Suponhamos que |u,| < 1 € x = 0, entdo existem constantes

positivas M e o tais que

E(t) < ME(0)e %!, paratodo ¢=0. (4.4.33)

Demonstracdo. Construiremos um funcional de Lyapunov adequado £ que satisfaca a seguinte

relacdo de equivaléncia
K1E(t) < £L(t) <x2E(t), paratodo (=0, (4.4.34)
para algum x1, x» > 0 e provaremos que
d
Eg(t) <-1%(t), paratodo =0, (4.4.35)
para algum A > 0, o que implica
L) <L0)e M, paratodo =0. (4.4.36)

Definimos o funcional de Lyapunov dado por

5
L(1):=NE)+ ) N;I;(1), (4.4.37)
i=1



68 Capitulo 4. Andlise de estabilidade de vigas laminadas com amortecimento Kelvin-Voigt e atraso de tempo forte

onde N;, i = 1,2,3,4,5 sdo ndmeros reais positivos que serdao escolhidos posteriormente. Pela

definicao de £ (1), temos que

!
|Z(5) - NE()| = N (Ipfo IffrIdX)

I I
+ N, (3pr Iuthldx+SIpr I(SS—«E—ux)StIdx)
0 0 (4.4.38)

u[f S(rydr
0

1 i
+ N3 (3Ipf IStSIdx+3pf dx)
0 0

! I el
+N4pf Iutuldx+N5f f le 222 (x,m)| dndx.
0 0 Jo

Segue de (4.4.1), das desigualdades de Young, Poincaré e Cauchy-Schwarz e do fato de que e %7 <

e 2™ < 1 para qualquer i € (0,1) que

l
f
0

o2E(1),

|Z(#) - NE(1)| dx

IA

1
u§+5§+s§+5§+s§+52+(3S—§—ux)2+f Z2dn
0

IA

para alguma constante o, > 0. Entao, podemos escolher N suficientemente grande para que

K1:=N—-02€eky:= N+ 05, entdo obtemos que

K1E(t) = L(t) <x2E(t), paratodo ¢=0. (4.4.39)

Agora, tomando a derivada de £ (t), substituindo as estimativas (4.4.2), (4.4.9), (4.4.15),
(4.4.21), (4.4.26), (4.4.31) e tomando

Ni=N;=N5=1 E_p e €_D (4.4.40)
1 —4V4 — 1V5 — 1, 3_2N3 4—4, 4.
obtemos
e—ZT 1
—x(r <- (NK cl—czNg——)f & dx - (NK cr+ )f Z2(x,1)dx
T )Jo
( K — ¢y Ny — c3(1 +2N3) N3 f S%dx——f &dx
(4.4.41)

[G2N2—01—04(1+ )”(35 E—u)?dx— (3DN3—c2N2—c4)f S2dx
26Nf82dx Pf usd

Primeiramente, vamos escolher N, suficientemente grande, tal que

zi(x, ndndx.
0

2 4
G"Ny—c1—¢y 1+5 > 0. (4.4.42)
Em seguida, selecionamos N3 grande o suficiente, tal que

3DN3—cyNy — ¢4 > 0. (4.4.43)
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Agora, escolhendo N suficientemente grande, i.e.,
N> max{(c1 + N+ 1/20)K™, 1 K™, (caNo + 031+ 2N5) N3)K !, 05} (4.4.44)

e aplicando a desigualdade de Poincaré, obtemos

d l 1
Ef(t)ﬁ—a'gf (u§+§§+s§+£§+S§+Sz+(35—f—ux)2+z2(x,1)+f 2 dn) dx
0 0

; ) (4.4.45)
< —O'Sf (uf+€§+S§+§§+S§+Sz+(38—é— ux)2+f szn) dx,
0 0
para alguma constante positiva o3. Portanto, de (4.4.1), temos
d
%f(t) <-04E(t), paratodo t>0. (4.4.46)
Em vista de (4.4.39) e (4.4.46), notamos que
d o
— L) < ——4$(t), paratodo ¢>0, (4.4.47)
dt Ko
oque leva a
_o4
L)< L(0)e ®', paratodo >0. (4.4.48)

O resultado desejado (4.4.33) segue usando estimativas (4.4.39) e (4.4.48). Entao, a prova do

Teorema 4.10 esta completa. OJ

4.4.4 Estabilidade polinomial

Nesta secdo, mostraremos que o semigrupo relacionado ao sistema de vigas laminadas (4.2.3)-
(4.2.5) decai polinomialmente com taxa t~1/2, se x # 0. Mas primeiro, precisamos nos lembrar de
uma nocao intermediaria de estabilidade, conhecida como estabilidade semiuniforme. Por definicdo,
dizemos que o semigrupo T'(t) é semiuniformemente estavel se existe uma funcao nao negativa

w (1) que se anula no infinito tal que
IT(OUoll.ze <yw ()L Uplle, paratodo Ue€ D(A). (4.4.49)

A nocao de estabilidade semiuniforme produz um conceito mais forte do que estabilidade. Mais
precisamente, garante a convergéncia T (1) Uy — 0 para todo Uy € D(«/), e como T'(t) é limitado, ele

imediatamente segue a convergéncia T (¢)Uy — 0 para todo Uj € A.

Em relagao a estabilidade semiuniforme, temos o seguinte resultado:

Teorema 4.11 (Batty (BATTY, 1994; BATTY; DUYCKAERTS, 2008))

O semigrupo T'(t) é semiuniformemente estavel se, e somente se, (/) NIR = 3.

Para garantir que o («f) N iR = &, precisamos do resultado dado na proposicao abaixo.

Proposicao 4.12
D(«f) @ A, i.e., ainclusao D(«f) c A é compacta.
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Demonstracao. Seja U, = (un, Wy, ¢n, Uny Sn,yn,zn)T uma sequéncia limitada em D(<«?). Em parti-

cular, temos

u, €limitadoem H*(0,1) € Hy(0,1), S, élimitadoem H*(0,1) € H,,(0,1),
wy, é limitado em H;(O, DeL?0,0), vy, ¥n € limitado em Hé(O, )€ L%0,]),
zn €limitadoem Hj((0,); H'(0,1)) € L*((0,1); H' (0, 1)).

Consequentemente, existem u,S € H'(0,1), w,v,y € L*(0,]) e z € L*((0,1); H' (0, 1)) tais que, até

uma subsequéncia,

up—u em Hy0,)), S, — S em H,0,D), w, — w em L*(0,]) (4.4.50)

vy — vem L[*0,0), y, — yem L*0,]), z, — z em L[*((0,0);H'(0,1)).  (4.4.51)
Resta provar a convergénciaé,, — {em H;(o, I) para algum é em Hkl,(O, 1). De fato, sabendo que
D&+ i Un + fazn (-, 1) é limitado em H?(0,1),
obtemos a convergéncia, até uma subsequéncia
Dép+ p1vn + p2zn(,1) — ¢ em H(0,D),
Por (4.4.51), concluimos que &, — &:= D7 { - v —poz(-,1)) em H}(0,1). O

Observacao 4.13
Como D(«/) € 7, ainversa of ~' é compacta. Segue imediatamente do Lema 4.14 (abaixo) que o

espectro de of consiste inteiramente de autovalores isolados.

Lema 4.14 (Kato (KATO, 1980), Theorem 6.29)

Seja of : D(«f) € X — X um operador linear fechado atuando em um espaco de Banach complexo
X. Se o for invertivel e o operador inverso </ ~! for compacto, entdo o espectro de </ consiste
inteiramente de autovalores isolados.

Lema 4.15

Sob as notagdes acima temos que o (#) NiR = 2.

Demonstracdo. Como o espectro de «f consiste inteiramente de autovalores isolados, podemos

supor, por contradicdo, que o/ tem um autovalor imaginario, i.e.,

(il-)U =0, AeR\{0} (4.4.52)
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onde U = (u, w,&,v,S,y, z)T € D(<#) \ {0}. Em coordenadas, temos que

ilu-w = 0, (4.4.53)

iMpw+GBS-¢—-uy)x = 0, (4.4.54)

iM—v = 0, (4.4.55)

IMpv =D&y — GBS —& — Uy) — U1 Vxx — P2Zxx(x,1) = 0, (4.4.56)
iAS—y = 0, (4.4.57)

iA31,y—3DSxx +3G(BS—¢&—uy) +46S+yy = 0, (4.4.58)
Atz+z, = 0. (4.4.59)

Da estimativa (4.2.14), obtemos v, = y = z,(x,1) = 0. Usando a desigualdade de Poincaré, temos que
v =0, 0 queimplica que & =&y = &xx = Vxx =0 (veja a Eq. (4.4.55)). De y =0, temos que S= S, =0
(veja Eq. (4.4.57)) e zx(x,1) = 0 implica que z,,(x,1) = 0. Por outro lado, da Eq. (4.4.56), obtemos

que

uy,=0 = u=0. (4.4.60)
Consequentemente, 3S — ¢ — u, = 0. Da Eq. (4.4.54), deduzimos que w = 0. Isso implica que U = 0.
Mas isso € uma contradicao, portanto nao ha autovalores imaginarios. ]

Nesta fase, podemos usar o seguinte Teorema:

Teorema 4.16 (Borichev & Tomilov (BORICHEV; TOMILOV, 2010), Theorem 2.4)
Seja T(t) = ! um semigrupo de contracdo em um espaco de Hilbert complexo X. Suponha que

iR c p(«f). Entao, para cada a > 0 fixo,
IGAI - <) 2 = O(A*)  quando  |A| — oo
se, e somente se,
IT(t) et e = 0% quando t— oo.
Para provar a taxa de decaimento polinomial, consideramos aqui a equacao resolvente escrita como
(ir-«)U=F (4.4.61)

onde U = (u, w,&,v,S,y, z)T eF= (fl,fz,fg,f4,f5,f6,f7)T € /€. Em coordenadas, temos que

ilu—w = fi, (4.4.62)

iMpw+GBS—¢—ux)x = pf (4.4.63)

iM-v = fs (4.4.64)

IMpv— DGy — GBS —¢ — Uy) — 1 Vxx — HoZxx(x,1) = I fa, (4.4.65)
iAS—y = fs, (4.4.66)

iA31,y—3DSxx +3G(BS—&—uy) +46S+yy = 3I,fs, (4.4.67)
AMz+z; = Tf7. (4.4.68)
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Por outro lado, segue de (4.2.14) que
K(Ilvgl® + 1y1% + 22 (x, DIZ) < CIU L # 1 Fll 7 (4.4.69)
Considerando o sistema (4.4.62)-(4.4.68), obtém-se os seguintes lemas.

Lema 4.17
Seja (u w, &, 0,8, y, z)T uma solucao do sistema (4.4.62)-(4.4.68). Entao existe uma constante posi-

tiva C, independente de A, tal que

138 — & — uxl® < ellU%, + A*ClIlUIl #lIFll.7, paratodo &> 0.

Demonstracdo. Multiplicando a Eq. (4.4.65) por 3S — ¢ — u, e integrando sobre [0, [], obtemos

I I
iupf v(3S—¢—uydx + Df Ex(3S— & —uy) xdx—Gl3S — & — uyl®
0 0

v~

11::
i l
+,u1f Vy(BS—¢&—uy)dx + ,uzf Zx(x,1)(3S—¢&—uy)dx
0 0

~/

L= L=
!
=1, [ fa(3S—&—uy)dx. (4.4.70)
0

Da Eq. (4.4.63) e (4.4.64), temos que

T Dl D -
Il = D[ {x(3s—f_ux)x: l/lp—f ngdx"'p_f fzfxdx
0 G Jo G Jo

Dt _ Dt _ D [l=
= %fo vxwdx+%f0 fg,xwdx+%f0 foéxdx. (4.4.71)
Por outro lado, usando a Eq. (4.4.63) em I, e I3, temos que
I l I_
I := ,ulf Vx(BS—¢—uy)ydx = iA%f vywdx+ %f fovedx (4.4.72)
0 G 0 G 0

I l I_
L= yzf 20 (%, 1) BS =€ — tty) ydx = iﬂtp—ng 2e(x, )T0dx + p—ng Frzx(x, 1) dx. (4.473)
0 0 0
Consequentemente, de (4.4.70), (4.4.71), (4.4.72) e (4.4.73), obtemos
1 D l D l
GI3S—¢—uzl? = iu,,f V(BS—¢ -ty dx + p—f uxwoix+p—f fraWdx
0 G Jo G Jo

D rl_ _ I 1_
+%f0 fﬁﬂl}ﬁ-ll%fo vxwdx+%j; fovxdx

P2

I_
f fazx(x, 1) dx. (4.474)
G Jo

I
+i/1%f zx(x, Dwdx +
G Jo
Usando a desigualdade de Young e a estimativa (4.4.69), obtemos

G Ge
S 188-¢- ugll® < - | wl? + A2CUll | Fl z.

Isso conclui a prova. O
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Lema 4.18
Seja (u, w,é, 0,8, y, z)T uma solucao do sistema (4.4.62)-(4.4.68). Entio existe uma constante posi-

tiva C, independente de A, tal que

ISx* + ISII> < eCllUII% + A*CIU | #lIFll %, paratodo &> 0.
Demonstragdo. Multiplicando a Eq. (4.4.67) por S e integrando sobre [0, I], obtemos
I i _ I !
3D||S|I> + 46|11 = —msfpf yde—SGf 3S—¢— ux)de—yf yde+3zpf fsSdx.
0 0 0 0
Usando as desigualdades de Cauchy-Schwarz, Young, Poincaré e a estimativa (4.4.69), obtemos

3D|ISI1? + 3818117 < AC|yII* + ClI3S = & — uyl* + CIUll s | Fll s (4.4.75)

3D SxlI* +381SI* < CI3S =& — uxll® + IAICI UL # | Fll# + Cl Ul # | Fl s. (4.4.76)
Finalmente, usando o Lema 4.17 obtemos

3D S« +381SI* = el Ul%, + A*ClUIL# | Fllz + IMCI Ul s | Ellse + CI Ul s | Ell e (4.477)

Isso completa a prova do Lema. O

Lema 4.19
Seja (u, w,é,0,S,y, z)T uma solucao do sistema (4.4.62)-(4.4.68). Entdo existe uma constante posi-

tiva C, independente de A, tal que

I€I1> <eCllUI% + A*’ClUIL#| Fll 7, paratodo &> 0. (4.4.78)

Demonstracdo. Multiplicando a Eq. (4.4.65) por E e integrando sobre [0, [], obtemos

1 _ l _ r_
DI = —idl, [ vEdx+G [ @s-¢-uofd—pn [ y.E.dx
0 0 0

14::

I _ I
—sz zx(x,l)s‘xdxﬂpf fagdx. (4.479)
0 0

Usando a Eq. (4.4.66) em Iy, as desigualdades de Cauchy-Schwarz, Young, Poincaré e a estimativa
(4.4.69), obtemos

D
Enéxuz < ClI3S =& — ugll® + CISLI> + A2 CIU || I Fll e + CIlUll | Fll ze.  (4.4.80)
Finalmente, usando os Lemas 4.17, 4.18, temos que
DI&LN* < el Ul%, + A*CIUI 7 Fll 7 + CIl Ul || Fll 7. (4.4.81)

Isso conclui a prova. [
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Lema 4.20
Seja (u, w,é, 0, S, y, z)T uma solucao do sistema (4.4.62)-(4.4.68). Entio existe uma constante posi-

tiva C, independente de A, tal que
lwl? < eCllUI%, + A*CllU|l #l|Fll 7, paratodo &3>0,
desde que |A] > 1.
Demonstragdo. Multiplicando a Eq. (4.4.63) por —iA~1w e integrando sobre [0, I], obtemos
plwl®+ %Gfol(%—(f— U)Wy dx = —%pfolfzwdx (4.4.82)

De (4.4.62), temos Wy = (iAUy — .?1,x) e, consequentemente,

) ! _ iG ! ip (V.
pllwll Gfo (SS—é—ux)uxdx+7f0 fo(SS—f—ux)dx—TfO frwdx

l
-GlI3S-¢ - ux||2+Gf BS—-¢—uy)@BS-¢)dx
0

iG ! iop 1. _
+—f f1,xBS=¢—uy) dx——pf Hwdx. (4.4.83)
A 0 A 0
Usando as desigualdades de Cauchy-Schwarz e Young e os Lemas 4.17, 4.18 e 4.19, temos que

C
pllwl? < CI3S—& — uyll® + eClISxI? + eCIELN? + == U |l || Fll #

Al
e
2 2 2 C
plwll”=elUl%, + A°ClIUll 2| Fll 2 + m”U”Jf”F”Jf
Isso completa a prova do Lema. O
Lema 4.21

Seja (u, w, &0, S, y, z)T uma solucao do sistema (4.4.62)-(4.4.68). Entio existe uma constante posi-

tiva C, independente de A, tal que
1
fo lzxl2 dp < CIUILzl FlLe,

desde que [A| > 1.

Demonstracdo. Diferenciando (4.4.68) em relacdo a x e multiplicando o resultado por z, e logo em

seguida, integrando sobre [0, [] x [0, 1], obtemos

! 1 1 bt
iAr f 20l dn+ 22,06 DI = 212,06 0l + 1 f f fr 575 dxdn. (4.4.84)
0 0 JO

Assim, tomando a parte imaginaria, temos que

1
I/llfo |zxlI? dn < CIUll || Fll s (4.4.85)

Isso conclui a prova. O
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Estamos agora em condicoes de provar o seguinte resultado de decaimento polinomial:

Teorema 4.22 (Decaimento polinomial)

Suponhamos que y # 0. Entdo o semigrupo T (¢) associado ao sistema (4.4.62)-(4.4.68) satisfaz
C
IT()Uoll.7e < mlonllpw), paratodo (>0, Upe D(s). (4.4.86)

Demonstracdo. Do Lema 4.15, temos iR c p(«/). Entdo usaremos o Teorema 4.16 para mostrar a

estabilidade polinomial. Segue dos Lemas 4.17, 4.18, 4.19, 4.20 e 4.21 que
Il + 1EI? + 1Sell® + 1SIP + 138 — & — will* < eCI U5, + A*ClUl# | Fllze.  (4.4.87)
Usando a desigualdade de Poincaré na estimativa (4.4.69), temos que
IwI* + 1 y1I% < CIU N I Fll se. (4.4.88)
Adicionando (4.4.87) e (4.4.88), obtemos que
1U1%, < eCIUN%, + A*CIU | #|IFll se. (4.4.89)
Consequentemente, temos que
(1-2e0)|U1%, < A*CIIFII%,. (4.4.90)

Agora, escolhemos ¢ suficientemente pequeno, tal que 1 —2¢C > 0. Entao, apds o uso de (4.4.61),

segue que
1 . _1
ﬁll(l/ll—d) Fllze = CIIF |l s (4.4.91)

Portanto, a partir do Teorema de Borichev e Tomilov (ver Teorema 4.16), provamos que a solucao

t—1/2

decai polinomialmente (lento) com taxa a medida que o tempo vai para o infinito. ]
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